咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 34 篇 univ sci & techn...
  • 34 篇 tsinghua univ pe...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 17 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 25 篇 radu timofte
  • 19 篇 van gool luc
  • 15 篇 loy chen change
  • 15 篇 lei lei
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 13 篇 pan jinshan
  • 13 篇 li chongyi
  • 13 篇 qiao yu
  • 12 篇 chen chen
  • 12 篇 marcos v. conde
  • 12 篇 liu shuai
  • 12 篇 chen wei-ting
  • 11 篇 wangmeng zuo
  • 11 篇 yu qiao
  • 10 篇 wei dong
  • 10 篇 zhou shangchen

语言

  • 3,318 篇 英文
  • 2 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是2221-2230 订阅
排序:
AdvDenoise: Fast Generation Framework of Universal and Robust Adversarial Patches Using Denoise
AdvDenoise: Fast Generation Framework of Universal and Robus...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Jing Li Zigan Wang Jinliang Li School of Economics and Management Tsinghua University Beijing China Shenzhen International Graduate School Tsinghua University Shenzhen China
Adversarial patch attacks, which can mislead deep learning models and the human eye in both the digital and physical domains, have led to a trust crisis. Traditional approaches to generating powerful attack patches re... 详细信息
来源: 评论
SegFormer3D: an Efficient Transformer for 3D Medical Image Segmentation
SegFormer3D: an Efficient Transformer for 3D Medical Image S...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Shehan Perera Pouyan Navard Alper Yilmaz Photogrammetric Computer Vision Lab The Ohio State University
The adoption of vision Transformers (ViTs) based architectures represents a significant advancement in 3D Medical Image (MI) segmentation, surpassing traditional Convolutional Neural Network (CNN) models by enhancing ... 详细信息
来源: 评论
ATOM: Attention Mixer for Efficient Dataset Distillation
ATOM: Attention Mixer for Efficient Dataset Distillation
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Samir Khaki Ahmad Sajedi Kai Wang Lucy Z. Liu Yuri A. Lawryshyn Konstantinos N. Plataniotis University of Toronto National University of Singapore Royal Bank of Canada (RBC)
Recent works in dataset distillation seek to minimize training expenses by generating a condensed synthetic dataset that encapsulates the information present in a larger real dataset. These approaches ultimately aim t... 详细信息
来源: 评论
NTIRE 2023 Challenge on Stereo Image Super-Resolution: Methods and Results
NTIRE 2023 Challenge on Stereo Image Super-Resolution: Metho...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Wang, Longguang Guo, Yulan Wang, Yingqian Li, Juncheng Gu, Shuhang Timofte, Radu Cheng, Ming Ma, Haoyu Ma, Qiufang Sun, Xiaopeng Zhao, Shijie Sheng, Xuhan Ding, Yukan Sun, Ming Wen, Xing Zhang, Dafeng Li, Jia Wang, Fan Xie, Zheng He, Zongyao Qiu, Zidian Pan, Zilin Zhan, Zhihao Xian, Xingyuan Jin, Zhi Zhou, Yuanbo Deng, Wei Nie, Ruofeng Zhang, Jiajun Gao, Qinquan Tong, Tong Zhang, Kexin Zhang, Junpei Peng, Rui Ma, Yanbiao Jiao, Licheng Bai, Haoran Kong, Lingshun Pan, Jinshan Dong, Jiangxin Tang, Jinhui Cao, Pu Huang, Tianrui Yang, Lu Song, Qing Chen, Bingxin He, Chunhua Chen, Meiyun Guo, Zijie Luo, Shaojuan Cao, Chengzhi Wang, Kunyu Zhang, Fanrui Zhang, Qiang Mehta, Nancy Murala, Subrahmanyam Dudhane, Akshay Wang, Yujin Li, Lingen Gendy, Garas Sabor, Nabil Hou, Jingchao He, Guanghui Chen, Junyang Li, Hao Shi, Yukai Yang, Zhijing Zou, Wenbin Zhang, Yunchen Jiang, Mingchao Yu, Zhongxin Tan, Ming Gao, Hongxia Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Chen, Jingxiang Yang, Bo Zhang, Xisheryl Li, Chenghua Yuan, Weijun Li, Zhan Deng, Ruting Zeng, Jintao Mahajan, Pulkit Mistry, Sahaj Chatterjee, Shreyas Jakhetiya, Vinit Subudhi, Badri Jaiswal, Sunil Zhang, Zhao Zheng, Huan Zhao, Suiyi Gao, Yangcheng Wei, Yanyan Wang, Bo Li, Gen Li, Aijin Sun, Lei Chen, Ke Tang, Congling Li, Yunzhe Chiang, Yuan-Chun Chen, Yi-Chung Huang, Zhi-Kai Yang, Hao-Hsiang Chen, I-Hsiang Kuo, Sy-Yen Wang, Yiheng Zhu, Gang Yang, Xingyi Liu, Songhua Jing, Yongcheng Hu, Xingyu Song, Jianwen Sun, Changming Sowmya, Arcot Park, Seung Ho Lei, Xiaoyan Wang, Jingchao Zhai, Chenbo Zhang, Yufei Cao, Weifeng Zhang, Wenlong Aviation University of Air Force China The Shenzhen Campus of Sun Yat-sen University Sun Yatsen University China National University of Defense Technology China Shanghai University China University of Electronic Science and Technology of China China University of Würzburg Germany ETH Zürich Switzerland ByteDance China Kuaishou Technology China Samsung Research China - Beijing China Sun Yat-sen University China Fuzhou University China Imperial Vision Technology Xidian University China Nanjing University of Science and Technology China Beijing University of Posts and Telecommunications China Guangdong University of Technology China The Hong Kong Polytechnic University Hong Kong University of Science and Technology of China China Indian Institute of Technology Ropar India MBZUAI Dubai United Arab Emirates Shanghai Artificial Intelligence Laboratory China Shanghai Jiao Tong University China Assiut University Egypt South China University of Technology China Fujian Normal University China GAC R&D Center Uppsala University Sweden Nanjing University of Information Science and Technology China Chinese Academy of Sciences Institute of Automation China Jinan University China Jiangxi Normal University China Indian Institute of Technology India K-Lens GmbH Hefei University of Technology China McMaster University Canada National Taiwan University Taiwan Research Institute Singapore National University of Singapore Singapore University of Sydney Australia Harbin Institute of Technology China University of New South Wales Australia CSIRO Data61 Australia Seoul National University Korea Republic of Zhengzhou University of Light Industry China
This paper summarizes the 2nd NTIRE challenge on stereo image super-resolution (SR) with a focus on new solutions and results. The task of the challenge is to super-resolve a low-resolution stereo image pair to a high... 详细信息
来源: 评论
COOD: Combined out-of-distribution detection using multiple measures for anomaly & novel class detection in large-scale hierarchical classification
COOD: Combined out-of-distribution detection using multiple ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Laurens E. Hogeweg Rajesh Gangireddy Django Brunink Vincent J. Kalkman Ludo Cornelissen Jacob W. Kamminga Intel Naturalis Biodiversity Center University of Twente
High-performing out-of-distribution (OOD) detection, both anomaly and novel class, is an important prerequisite for the practical use of classification models. In this paper we focus on the species recognition task in... 详细信息
来源: 评论
End-to-End Neural Network Compression via l1/l2 Regularized Latency Surrogates
End-to-End Neural Network Compression via l1/l2 Regularized ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Anshul Nasery Hardik Shah Arun Sai Suggala Prateek Jain University of Washington ETH Zurich Google Research India
Neural network (NN) compression via techniques such as pruning, quantization requires setting compression hyperparameters (e.g., number of channels to be pruned, bitwidths for quantization) for each layer either manua... 详细信息
来源: 评论
Test-Time Adaptation with SaLIP: A Cascade of SAM and CLIP for Zero-shot Medical Image Segmentation
Test-Time Adaptation with SaLIP: A Cascade of SAM and CLIP f...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Sidra Aleem Fangyijie Wang Mayug Maniparambil Eric Arazo Julia Dietlmeier Kathleen Curran Noel E. O’Connor Suzanne Little ML-Labs Dublin City University ML-Labs University College Dublin Centre for Applied AI (CeADAR) University College Dublin Ireland Insight SFI Centre for Data Analytics Dublin City University
The Segment Anything Model (SAM) and CLIP are remarkable vision foundation models (VFMs). SAM, a prompt-driven segmentation model, excels in segmentation tasks across diverse domains, while CLIP is renowned for its ze... 详细信息
来源: 评论
Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D Generative Modeling
Repeat and Concatenate: 2D to 3D Image Translation with 3D t...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Abril Corona-Figueroa Hubert P. H. Shum Chris G. Willcocks Department of Computer Science Durham University Durham UK
This paper investigates a 2D to 3D image translation method with a straightforward technique, enabling correlated 2D X-ray to 3D CT-like reconstruction. We observe that existing approaches, which integrate information... 详细信息
来源: 评论
Deploying Machine Learning Anomaly Detection Models to Flight Ready AI Boards
Deploying Machine Learning Anomaly Detection Models to Fligh...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: James Murphy Maria Buckley Léonie Buckley Adam Taylor Jake O’Brien Brian Mac Namee Réaltra Space Systems Engineering Ubotica Technologies Adiuvo Engineering & Training School of Computer Science University College Dublin
This study explores the development and implementation of machine learning (ML) models on Edge-AI boards, aiming to identify the most effective solution for anomaly detection systems on space missions. We investigate ... 详细信息
来源: 评论
Deep Learning-Based Identification of Arctic Ocean Boundaries and Near-Surface Phenomena in Underwater Echograms
Deep Learning-Based Identification of Arctic Ocean Boundarie...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Femina Senjaliya Melissa Cote Amanda Dash Alexandra Branzan Albu Andrea Niemi Stéphane Gauthier Julek Chawarski Steve Pearce Kaan Ersahin Keath Borg Electrical and Computer Engineering University of Victoria Victoria Canada ASL Environmental Sciences Victoria Canada Fisheries and Oceans Canada
Monitoring marine environments is a crucial part of understanding the impact of oceans on global climate and their importance for biodiversity and ecological systems, particularly in the Arctic region. Underwater acti... 详细信息
来源: 评论