咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是2251-2260 订阅
排序:
Sat2Cap: Mapping Fine-Grained Textual Descriptions from Satellite Images
Sat2Cap: Mapping Fine-Grained Textual Descriptions from Sate...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Aayush Dhakal Adeel Ahmad Subash Khanal Srikumar Sastry Hannah Kerner Nathan Jacobs Washington University in St. Louis Taylor Geospatial Institute Arizona State University
We propose a weakly supervised approach for creating maps using free-form textual descriptions. We refer to this work of creating textual maps as zero-shot mapping. Prior works have approached mapping tasks by develop... 详细信息
来源: 评论
Dedicated Inference Engine and Binary-Weight Neural Networks for Lightweight Instance Segmentation
Dedicated Inference Engine and Binary-Weight Neural Networks...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Tse-Wei Chen Wei Tao Dongyue Zhao Kazuhiro Mima Tadayuki Ito Kinya Osa Masami Kato Device Technology Development Headquarters Canon Inc. Tokyo Japan Canon Innovative Solution (Beijing) Co. Ltd. Beijing China
Binary-weight Neural Networks (BNNs), in which weights are binarized and activations are quantized, are employed to reduce computational costs of various kinds of applications. In this paper, a design methodology of h... 详细信息
来源: 评论
Cross-Temporal Spectrogram Autoencoder (CTSAE): Unsupervised Dimensionality Reduction for Clustering Gravitational Wave Glitches
Cross-Temporal Spectrogram Autoencoder (CTSAE): Unsupervised...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Yi Li Yunan Wu Aggelos K. Katsaggelos The Department of Computer Science Northwestern University Evanston IL The Department of Electrical Computer Engineering Northwestern University Evanston IL
The advancement of The Laser Interferometer Gravitational-Wave Observatory (LIGO) has significantly enhanced the feasibility and reliability of gravitational wave detection. However, LIGO’s high sensitivity makes it ... 详细信息
来源: 评论
NTIRE 2021 Learning the Super-Resolution Space Challenge
NTIRE 2021 Learning the Super-Resolution Space Challenge
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Lugmayr, Andreas Danelljan, Martin Timofte, Radu Busch, Christoph Chen, Yang Cheng, Jian Chudasama, Vishal Gang, Ruipeng Gao, Shangqi Gao, Kun Gong, Laiyun Han, Qingrui Huang, Chao Jin, Zhi Jo, Younghyun Kim, Seon Joo Kim, Younggeun Lee, Seungjun Lei, Yuchen Li, Chu-Tak Li, Chenghua Li, Ke Liu, Zhi-Song Liu, Youming Nan, Nan Park, Seung-Ho Patel, Heena Peng, Shichong Prajapati, Kalpesh Qi, Haoran Raja, Kiran Ramachandra, Raghavendra Siu, Wan-Chi Son, Donghee Song, Ruixia Upla, Kishor Wang, Li-Wen Wang, Yatian Wang, Junwei Wu, Qianyu Xu, Xinhua Yang, Sejong Yuan, Zhen Zhang, Liting Zhang, Huanrong Zhang, Junkai Zhang, Yifan Zhang, Zhenzhou Zhou, Hangqi Zhu, Aichun Zhuang, Xiahai Zou, Jiaxin Swiss Fed Inst Technol Zurich Switzerland Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Zhejiang Univ Hangzhou Peoples R China NetEaseYunXin Beijing Peoples R China Yonsei Univ Seoul South Korea Seoul Natl Univ Seoul South Korea Univ Ulsan Coll Med Asan Med Ctr Ulsan South Korea Lomin Inc Portland OR USA Fudan Univ Shanghai Peoples R China Simon Fraser Univ Burnaby BC Canada Caritas Inst Higher Educ Hong Kong Peoples R China Hong Kong Polytech Univ Hong Kong Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China North China Univ Technol Beijing Peoples R China Univ Elect Sci & Technol China Chengdu Peoples R China CASIA Beijing Peoples R China NRTA Beijing Peoples R China NCUT Beijing Peoples R China Nanjing Tech Univ Sch Comp Sci & Technol Nanjing Peoples R China Southeast Univ Lab Image Sci & Technol Nanjing Peoples R China SVNIT Surat Gujarat India NTNU Trondheim Norway
This paper reviews the NTIRE 2021 challenge on learning the super-Resolution space. It focuses on the participating methods and final results. The challenge addresses the problem of learning a model capable of predict... 详细信息
来源: 评论
DMR: Disentangling Marginal Representations for Out-of-Distribution Detection
DMR: Disentangling Marginal Representations for Out-of-Distr...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Dasol Choi Dongbin Na MODULABS Yonsei University Pohang University of Science and Technology
Out-of-Distribution (OOD) detection is crucial for the reliable deployment of deep-learning applications. When a given input image does not belong to any categories of the deployed classification model, the classifica... 详细信息
来源: 评论
Speech2UnifiedExpressions: Synchronous Synthesis of Co-Speech Affective Face and Body Expressions from Affordable Inputs
Speech2UnifiedExpressions: Synchronous Synthesis of Co-Speec...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Uttaran Bhattacharya Aniket Bera Dinesh Manocha Adobe Inc. San Jose CA USA Purdue University West Lafayette IN USA University of Maryland College Park MD USA
We present a multimodal learning-based method to simultaneously synthesize co-speech facial expressions and upper-body gestures for digital characters using RGB video data captured using commodity cameras. Our approac... 详细信息
来源: 评论
Correction to: Automated facial expression recognition using exemplar hybrid deep feature generation technique (Soft Computing, (2023), 27, 13, (8721-8737), 10.1007/s00500-023-08230-9)
收藏 引用
Soft Computing 2024年 1-2页
作者: Baygin, Mehmet Tuncer, Ilknur Dogan, Sengul Barua, Prabal Datta Tuncer, Turker Cheong, Kang Hao Acharya, U. Rajendra Department of Computer Engineering Faculty of Engineering Ardahan University Ardahan Turkey Interior Ministry Elazig Turkey Department of Digital Forensics Engineering Technology Faculty Firat University Elazig Turkey University of Southern Queensland ToowoombaQLD4350 Australia Faculty of Engineering and Information Technology University of Technology Sydney SydneyNSW2007 Australia Science Mathematics and Technology Cluster Singapore University of Technology and Design Singapore487372 Singapore School of Mathematics Physics and Computing University of Southern Queensland Springfield Australia
The author found that the below references were not included in the published article. Kanade T, Cohn JF, Tian Y (2000) Comprehensive database for facial expression analysis. In: Proc-4th ieee int conf autom face gest...
来源: 评论
Towards Efficient Machine Unlearning with Data Augmentation: Guided Loss-Increasing (GLI) to Prevent the Catastrophic Model Utility Drop
Towards Efficient Machine Unlearning with Data Augmentation:...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Dasol Choi Soora Choi Eunsun Lee Jinwoo Seo Dongbin Na Yonsei University MODULABS Chung Ang University Kyung Hee University Millennialsworks Inc. POSTECH
Machine unlearning algorithms aim to make a model forget specific data that might be used in the training phase. To solve this problem, various studies have adopted loss-increasing methods. For example, some unlearnin... 详细信息
来源: 评论
Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach
Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly G...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Ayush K. Rai Tarun Krishna Feiyan Hu Alexandru Drimbarean Kevin McGuinness Alan F. Smeaton Noel E. O’Connor Insight SFI Centre for Data Analytics Dublin City University Tobii Corporation Galway
Video Anomaly Detection (VAD) is an open-set recognition task, which is usually formulated as a one-class classification (OCC) problem, where training data is comprised of videos with normal instances while test data ... 详细信息
来源: 评论
Analyzing Participants’ Engagement during Online Meetings Using Unsupervised Remote Photoplethysmography with Behavioral Features
Analyzing Participants’ Engagement during Online Meetings U...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Alexander Vedernikov Zhaodong Sun Virpi-Liisa Kykyri Mikko Pohjola Miriam Nokia Xiaobai Li Center for Machine Vision and Signal Analysis University of Oulu Finland Department of Psychology University of Jyväskylä Finland State Key Laboratory of Blockchain and Data Security Zhejiang University China
Engagement measurement finds application in healthcare, education, services. The use of physiological and behavioral features is viable, but the impracticality of traditional physiological measurement arises due to th... 详细信息
来源: 评论