咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是221-230 订阅
排序:
Super-Resolution based Video Coding Scheme
Super-Resolution based Video Coding Scheme
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Cho, Hyun Min Choi, Kiho Gacheon Univ Sch Comp 1342 Seongnamdaero Seongnam Si Gyeonggi Do South Korea
In this paper, we present a super-resolution-based video coding scheme that compresses video data by combining traditional hybrid video coding and Convolutional neural network-based video coding. During video encoding... 详细信息
来源: 评论
Image Reconstruction from Neuromorphic Event Cameras using Laplacian-Prediction and Poisson Integration with Spiking and Artificial Neural Networks
Image Reconstruction from Neuromorphic Event Cameras using L...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Duwek, Hadar Cohen Shalumov, Albert Tsur, Elishai Ezra Open Univ Israel Neurobiomorph Engn Lab NBEL Dept Math & Comp Sci Raanana Israel
Event cameras are robust neuromorphic visual sensors, which communicate transients in luminance as events. Current paradigm for image reconstruction from event data relies on direct optimization of artificial Convolut... 详细信息
来源: 评论
Learned Compression of High Dimensional Image Datasets
Learned Compression of High Dimensional Image Datasets
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Cole, Elizabeth Meng, Qingxi Pauly, John Vasanawala, Shreyas Stanford Univ Dept Elect Engn Stanford CA 94305 USA Stanford Univ Dept Radiol Stanford CA 94305 USA
In many applications, such as burst photography and magnetic resonance imaging (MRI), multiple images are acquired to reduce the noise of the eventual reconstructed image. However, this leads to very high dimensional ... 详细信息
来源: 评论
CompConv: A Compact Convolution Module for Efficient Feature Learning
CompConv: A Compact Convolution Module for Efficient Feature...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Chen Xu, Yinghao Shen, Yujun Zhejiang Univ Hangzhou Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
Convolutional Neural Networks (CNNs) have achieved remarkable success in various computer vision tasks but rely on tremendous computational cost. To solve this problem, existing approaches either compress well-trained... 详细信息
来源: 评论
CL-Gym: Full-Featured PyTorch Library for Continual Learning
CL-Gym: Full-Featured PyTorch Library for Continual Learning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Mirzadeh, Seyed Iman Ghasemzadeh, Hassan Washington State Univ Pullman WA 99164 USA
Continual learning (CL) has become one of the most active research venues within the artificial intelligence community in recent years. Given the significant amount of attention paid to continual learning, the need fo... 详细信息
来源: 评论
Active vision Dataset Benchmark  31
Active Vision Dataset Benchmark
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ammirato, Phil Berg, Alexander C. Kosecka, Jana Univ N Carolina Chapel Hill NC 27514 USA George Mason Univ Fairfax VA 22030 USA
Several recent efforts in computer vision indicate a trend toward studying and understanding problems in larger scale environments, beyond single images, and focus on connections to tasks in navigation, mobile manipul... 详细信息
来源: 评论
A Universal Encoder Rate Distortion Optimization Framework for Learned Compression
A Universal Encoder Rate Distortion Optimization Framework f...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhao, Jing Li, Bin Li, Jiahao Xiong, Ruiqin Lu, Yan Peking Univ Beijing Peoples R China Microsoft Res Asia Beijing Peoples R China
Learning-based image compression has drawn increasing attention in recent years. Despite impressive progress has been made, it still lacks a universal encoder optimization method to seek efficient representation for d... 详细信息
来源: 评论
CNN-based morphological decomposition of X-ray images for details and defects contrast enhancement
CNN-based morphological decomposition of X-ray images for de...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Madmad, Tahani Delinte, Nicolas De Vleeschouwer, Christophe UCLouvain ICTEAM Louvain La Neuve Belgium
This paper introduces a new learning based framework for X-ray images that relies on a morphological decomposition of the signal into two main components, separating images into local textures and piecewise smooth (ca... 详细信息
来源: 评论
Pose Tutor: An Explainable System for Pose Correction in the Wild
Pose Tutor: An Explainable System for Pose Correction in the...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Dittakavi, Bhat Bavikadi, Divyagna Desai, Sai Vikas Chakraborty, Soumi Reddy, Nishant Balasubramanian, Vineeth N. Callepalli, Bharathi Sharma, Ayon IIT Hyderabad Hyderabad Telangana India Variance AI Hyderabad India
Under the new norm of working from home, demand for fitness from home is on the rise. Different exercise forms solve different fitness needs for different people. Yoga gives flexibility and relieves stress. Pilates st... 详细信息
来源: 评论
Content-aware Input Scaling and Deep Learning Computation Offloading for Low-Latency Embedded vision
Content-aware Input Scaling and Deep Learning Computation Of...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Prabhune, Omkar Chen, Tianen Kim, Younghyun Purdue Univ W Lafayette IN 47907 USA Univ Wisconsin Madison WI 53706 USA Google Mountain View CA 94043 USA
Deploying deep learning (DL) models for visual recognition on embedded systems is often constrained by their limited compute power and storage capacity, and has stringent latency and power requirements. As emerging DL... 详细信息
来源: 评论