咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是2381-2390 订阅
排序:
Deep Learning for Automatic Pneumonia Detection
Deep Learning for Automatic Pneumonia Detection
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Gabruseva, Tatiana Poplavskiy, Dmytro Kalinin, Alexandr Topcon Positioning Syst Brisbane Qld Australia Univ Michigan Ann Arbor MI 48109 USA Shenzhen Res Inst Big Data Shenzhen 518172 Guangdong Peoples R China
Pneumonia is the leading cause of death among young children and one of the top mortality causes worldwide. The pneumonia detection is usually performed through examine of chest X-Ray radiograph by highly-trained spec... 详细信息
来源: 评论
On the Stability-Plasticity Dilemma of Class-Incremental Learning
On the Stability-Plasticity Dilemma of Class-Incremental Lea...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Dongwan Kim Bohyung Han Computer Vision Laboratory ECE Seoul National University IPAI Seoul National University
A primary goal of class-incremental learning is to strike a balance between stability and plasticity, where models should be both stable enough to retain knowledge learned from previously seen classes, and plastic eno...
来源: 评论
Neurodata Lab's approach to the Challenge on computer vision for Physiological Measurement
Neurodata Lab's approach to the Challenge on Computer Vision...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Artemyev, Mikhail Churikova, Marina Grinenko, Mikhail Perepelkina, Olga Neurodata Lab LLC Miami FL 33137 USA Lomonosov Moscow State Univ Fac Biol Dept Higher Nervous Act Moscow Russia
This paper introduces the Neurodata Lab's approach presented at the 1st Challenge on Remote Physiological Signal Sensing (RePSS) organized within CVPR2020. The RePSS challenge was focused on measuring the average ... 详细信息
来源: 评论
Comprehensive and Delicate: An Efficient Transformer for Image Restoration
Comprehensive and Delicate: An Efficient Transformer for Ima...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Haiyu Zhao Yuanbiao Gou Boyun Li Dezhong Peng Jiancheng Lv Xi Peng College of Computer Science Sichuan University
vision Transformers have shown promising performance in image restoration, which usually conduct window- or channel-based attention to avoid intensive computations. Although the promising performance has been achieved...
来源: 评论
AVFormer: Injecting vision into Frozen Speech Models for Zero-Shot AV-ASR
AVFormer: Injecting Vision into Frozen Speech Models for Zer...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Paul Hongsuck Seo Arsha Nagrani Cordelia Schmid Google Research
Audiovisual automatic speech recognition (AV-ASR) aims to improve the robustness of a speech recognition system by incorporating visual information. Training fully supervised multimodal models for this task from scrat...
来源: 评论
Learning Conditional Attributes for Compositional Zero-Shot Learning
Learning Conditional Attributes for Compositional Zero-Shot ...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Qingsheng Wang Lingqiao Liu Chenchen Jing Hao Chen Guoqiang Liang Peng Wang Chunhua Shen School of Computer Science and Ningbo Institute Northwestern Polytechnical University Xi'an China School of Computer Science University of Adelaide Adelaide Australia School of Computer Science Zhejiang University Hangzhou China
Compositional Zero-Shot Learning (CZSL) aims to train models to recognize novel compositional concepts based on learned concepts such as attribute-object combinations. One of the challenges is to model attributes inte...
来源: 评论
Contrastive Grouping with Transformer for Referring Image Segmentation
Contrastive Grouping with Transformer for Referring Image Se...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Jiajin Tang Ge Zheng Cheng Shi Sibei Yang School of Information Science and Technology ShanghaiTech University Shanghai Engineering Research Center of Intelligent Vision and Imaging
Referring image segmentation aims to segment the target referent in an image conditioning on a natural language expression. Existing one-stage methods employ per-pixel classification frameworks, which attempt straight...
来源: 评论
Document Image Shadow Removal Guided by Color-Aware Background
Document Image Shadow Removal Guided by Color-Aware Backgrou...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Ling Zhang Yinghao He Qing Zhang Zheng Liu Xiaolong Zhang Chunxia Xiao School of Computer Science and Technology Wuhan University of Science and Technology School of Computer Science and Engineering Sun Yat-Sen University School of Computer Science China University of Geosciences (Wuhan) School of Computer Science Wuhan University
Existing works on document image shadow removal mostly depend on learning and leveraging a constant background (the color of the paper) from the image. However, the constant background is less representative and frequ...
来源: 评论
MAP: Multimodal Uncertainty-Aware vision-Language Pre-training Model
MAP: Multimodal Uncertainty-Aware Vision-Language Pre-traini...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Yatai Ji Junjie Wang Yuan Gong Lin Zhang Yanru Zhu Hongfa Wang Jiaxing Zhang Tetsuya Sakai Yujiu Yang Tsinghua University Waseda University IDEA Tencent TEG
Multimodal semantic understanding often has to deal with uncertainty, which means the obtained messages tend to refer to multiple targets. Such uncertainty is problematic for our interpretation, including inter- and i...
来源: 评论
Anomaly Detection in Autonomous Driving: A Survey
Anomaly Detection in Autonomous Driving: A Survey
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Daniel Bogdoll Maximilian Nitsche J. Marius Zö llner FZI Research Center for Information Technology Karlsruhe Germany KIT Karlsruhe Institute of Technology Karlsruhe Germany
Nowadays, there are outstanding strides towards a future with autonomous vehicles on our roads. While the perception of autonomous vehicles performs well under closed-set conditions, they still struggle to handle the ... 详细信息
来源: 评论