咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是2391-2400 订阅
排序:
DRHDR: A Dual branch Residual Network for Multi-Bracket High Dynamic Range Imaging
DRHDR: A Dual branch Residual Network for Multi-Bracket High...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Juan Marí n-Vega Michael Sloth Peter Schneider-Kamp Richard Rö ttger Department of Mathematics and Computer Science (IMADA) University of Southern Denmark Esoft Systems
We introduce DRHDR, a Dual branch Residual Convolutional Neural Network for Multi-Bracket HDR Imaging. To address the challenges of fusing multiple brackets from dynamic scenes, we propose an efficient dual branch net... 详细信息
来源: 评论
AutoRecon: Automated 3D Object Discovery and Reconstruction
AutoRecon: Automated 3D Object Discovery and Reconstruction
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Yuang Wang Xingyi He Sida Peng Haotong Lin Hujun Bao Xiaowei Zhou State Key Lab of CAD&CG Zhejiang University ZJU-SenseTime Joint Lab of 3D Vision
A fully automated object reconstruction pipeline is crucial for digital content creation. While the area of 3D reconstruction has witnessed profound developments, the removal of background to obtain a clean object mod...
来源: 评论
Learning Expressive Prompting With Residuals for vision Transformers
Learning Expressive Prompting With Residuals for Vision Tran...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Rajshekhar Das Yonatan Dukler Avinash Ravichandran Ashwin Swaminathan Carnegie Mellon University AWS AI Labs
Prompt learning is an efficient approach to adapt transformers by inserting learnable set of parameters into the input and intermediate representations of a pre-trained model. In this work, we present Expressive Promp...
来源: 评论
Exploring Structured Semantic Prior for Multi Label recognition with Incomplete Labels
Exploring Structured Semantic Prior for Multi Label Recognit...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Zixuan Ding Ao Wang Hui Chen Qiang Zhang Pengzhang Liu Yongjun Bao Weipeng Yan Jungong Han Xidian University Hangzhou Zhuoxi Institute of Brain and Intelligence Tsinghua University BNRist *** Department of Computer Science The University of Sheffield UK Centre for Machine Intelligence the University of Sheffield UK
Multi-label recognition (MLR) with incomplete labels is very challenging. Recent works strive to explore the image-to-label correspondence in the vision-language model, i.e., CLIP [22], to compensate for insufficient ...
来源: 评论
Unbalanced Optimal Transport: A Unified Framework for Object Detection
Unbalanced Optimal Transport: A Unified Framework for Object...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Henri De Plaen Pierre-François De Plaen Johan A. K. Suykens Marc Proesmans Tinne Tuytelaars Luc Van Gool ESAT-STADIUS KU Leuven Belgium ESAT-PSI KU Leuven Belgium Computer Vision Lab ETH Zürich Switzerland
During training, supervised object detection tries to correctly match the predicted bounding boxes and associated classification scores to the ground truth. This is essential to determine which predictions are to be p...
来源: 评论
CPARR: Category-based Proposal Analysis for Referring Relationships
CPARR: Category-based Proposal Analysis for Referring Relati...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: He, Chuanzi Zhu, Haidong Gao, Jiyang Chen, Kan Nevatia, Ram Univ Southern Calif Los Angeles CA 90007 USA
The task of referring relationships is to localize subject and object entities in an image satisfying a relationship query, which is given in the form of . This requires simultaneous localization of the subject and ob... 详细信息
来源: 评论
Leveraging combinatorial testing for safety-critical computer vision datasets
Leveraging combinatorial testing for safety-critical compute...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Gladisch, Christoph Heinzemann, Christian Herrmann, Martin Woehrle, Matthias Robert Bosch GmbH Corp Res Gerlingen Germany
Deep learning-based approaches have gained popularity for environment perception tasks such as semantic segmentation and object detection from images. However, the different nature of a data-driven deep neural nets (D... 详细信息
来源: 评论
Seeing Beyond the Brain: Conditional Diffusion Model with Sparse Masked Modeling for vision Decoding
Seeing Beyond the Brain: Conditional Diffusion Model with Sp...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Zijiao Chen Jiaxin Qing Tiange Xiang Wan Lin Yue Juan Helen Zhou National University of Singapore The Chinese University of Hong Kong Stanford University
Decoding visual stimuli from brain recordings aims to deepen our understanding of the human visual system and build a solid foundation for bridging human and computer vision through the Brain-computer Interface. Howev...
来源: 评论
Video Test-Time Adaptation for Action recognition
Video Test-Time Adaptation for Action Recognition
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Wei Lin Muhammad Jehanzeb Mirza Mateusz Kozinski Horst Possegger Hilde Kuehne Horst Bischof Institute for Computer Graphics and Vision Graz University of Technology Austria Christian Doppler Laboratory for Semantic 3D Computer Vision Christian Doppler Laboratory for Embedded Machine Learning Goethe University Frankfurt Germany MIT-IBM Watson AI Lab
Although action recognition systems can achieve top performance when evaluated on in-distribution test points, they are vulnerable to unanticipated distribution shifts in test data. However, test-time adaptation of vi...
来源: 评论
Improving Robustness of vision Transformers by Reducing Sensitivity to Patch Corruptions
Improving Robustness of Vision Transformers by Reducing Sens...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Yong Guo David Stutz Bernt Schiele Max Planck Institute for Informatics Saarland Informatics Campus
Despite their success, vision transformers still remain vulnerable to image corruptions, such as noise or blur. Indeed, we find that the vulnerability mainly stems from the unstable self-attention mechanism, which is ...
来源: 评论