咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是2411-2420 订阅
排序:
The Enemy of My Enemy is My Friend: Exploring Inverse Adversaries for Improving Adversarial Training
The Enemy of My Enemy is My Friend: Exploring Inverse Advers...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Junhao Dong Seyed-Mohsen Moosavi-Dezfooli Jianhuang Lai Xiaohua Xie School of Computer Science and Engineering Sun Yat-Sen University China Imperial College London UK Guangdong Province Key Laboratory of Information Security Technology China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China
Although current deep learning techniques have yielded superior performance on various computer vision tasks, yet they are still vulnerable to adversarial examples. Adversarial training and its variants have been show...
来源: 评论
High-fidelity Event-Radiance Recovery via Transient Event Frequency
High-fidelity Event-Radiance Recovery via Transient Event Fr...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Jin Han Yuta Asano Boxin Shi Yinqiang Zheng Imari Sato Graduate School of Information Science and Technology The University of Tokyo National Institute of Informatics National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University National Engineering Research Center of Visual Technology School of Computer Science Peking University
High-fidelity radiance recovery plays a crucial role in scene information reconstruction and understanding. Conventional cameras suffer from limited sensitivity in dynamic range, bit depth, and spectral response, etc....
来源: 评论
Filtering, Distillation, and Hard Negatives for vision-Language Pre-Training
Filtering, Distillation, and Hard Negatives for Vision-Langu...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Filip Radenovic Abhimanyu Dubey Abhishek Kadian Todor Mihaylov Simon Vandenhende Yash Patel Yi Wen Vignesh Ramanathan Dhruv Mahajan Meta AI CTU in Prague
vision-language models trained with contrastive learning on large-scale noisy data are becoming increasingly popular for zero-shot recognition problems. In this paper we improve the following three aspects of the cont...
来源: 评论
DKM: Dense Kernelized Feature Matching for Geometry Estimation
DKM: Dense Kernelized Feature Matching for Geometry Estimati...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Johan Edstedt Ioannis Athanasiadis Mårten Wadenbäck Michael Felsberg Computer Vision Laboratory Linköping University
Feature matching is a challenging computer vision task that involves finding correspondences between two images of a 3D scene. In this paper we consider the dense approach instead of the more common sparse paradigm, t...
来源: 评论
Deep Random Projector: Accelerated Deep Image Prior
Deep Random Projector: Accelerated Deep Image Prior
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Taihui Li Hengkang Wang Zhong Zhuang Ju Sun Computer Science and Engineering University of Minnesota Minneapolis USA Electrical and Computer Engineering University of Minnesota Minneapolis USA
Deep image prior (DIP) has shown great promise in tackling a variety of image restoration (IR) and general visual inverse problems, needing no training data. However, the resulting optimization process is often very s...
来源: 评论
Area Under the ROC Curve Maximization for Metric Learning
Area Under the ROC Curve Maximization for Metric Learning
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Bojana Gajić Ariel Amato Ramon Baldrich Joost van de Weijer Carlo Gatta Vintra Inc. Barcelona Spain Computer Vision Center Barcelona Spain
Most popular metric learning losses have no direct relation with the evaluation metrics that are subsequently applied to evaluate their performance. We hypothesize that training a metric learning model by maximizing t... 详细信息
来源: 评论
ActMAD: Activation Matching to Align Distributions for Test-Time-Training
ActMAD: Activation Matching to Align Distributions for Test-...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: M. Jehanzeb Mirza Pol Jané Soneira Wei Lin Mateusz Kozinski Horst Possegger Horst Bischof Institute for Computer Graphics and Vision TU Graz Austria Christian Doppler Laboratory for Embedded Machine Learning Institute of Control Systems KIT Germany Christian Doppler Laboratory for Semantic 3D Computer Vision
Test-Time-Training (TTT) is an approach to cope with out-of-distribution (OOD) data by adapting a trained model to distribution shifts occurring at test-time. We propose to perform this adaptation via Activation Match...
来源: 评论
Local Implicit Ray Function for Generalizable Radiance Field Representation
Local Implicit Ray Function for Generalizable Radiance Field...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Xin Huang Qi Zhang Ying Feng Xiaoyu Li Xuan Wang Qing Wang School of Computer Science Northwestern Polytechnical University Xi'an China Tencent AI Lab
We propose LIRF (Local Implicit Ray Function), a generalizable neural rendering approach for novel view rendering. Current generalizable neural radiance fields (NeRF) methods sample a scene with a single ray per pixel...
来源: 评论
Iterative Next Boundary Detection for Instance Segmentation of Tree Rings in Microscopy Images of Shrub Cross Sections
Iterative Next Boundary Detection for Instance Segmentation ...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Alexander Gillert Giulia Resente Alba Anadon-Rosell Martin Wilmking Uwe Freiherr Von Lukas Fraunhofer Institute for Computer Graphics Research (IGD) Rostock Institute of Botany and Landscape Ecology Ernst Moritz Arndt University Greifswald Centre for Research on Ecology and Forestry Applications (CREAF) Barcelona Institute for Visual & Analytic Computing University of Rostock
We address the problem of detecting tree rings in microscopy images of shrub cross sections. This can be regarded as a special case of the instance segmentation task with several unique challenges such as the concentr...
来源: 评论
Efficient Loss Function by Minimizing the Detrimental Effect of Floating-Point Errors on Gradient-Based Attacks
Efficient Loss Function by Minimizing the Detrimental Effect...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Yunrui Yu Cheng-Zhong Xu Department of Computer Science State Key Lab of IOTSC University of Macau Macau SAR China
Attackers can deceive neural networks by adding human imperceptive perturbations to their input data; this reveals the vulnerability and weak robustness of current deep-learning networks. Many attack techniques have b...
来源: 评论