咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是2451-2460 订阅
排序:
Correspondence Transformers with Asymmetric Feature Learning and Matching Flow Super-Resolution
Correspondence Transformers with Asymmetric Feature Learning...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Yixuan Sun Dongyang Zhao Zhangyue Yin Yiwen Huang Tao Gui Wenqiang Zhang Weifeng Ge Academy of Engineering & Technology Fudan University Shanghai China School of Computer Science Fudan University Shanghai China
This paper solves the problem of learning dense visual correspondences between different object instances of the same category with only sparse annotations. We decompose this pixel-level semantic matching problem into...
来源: 评论
NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Quantization for vision Transformers
NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Qua...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Yijiang Liu Huanrui Yang Zhen Dong Kurt Keutzer Li Du Shanghang Zhang Nanjing University University of California Berkeley National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University
The complicated architecture and high training cost of vision transformers urge the exploration of post-training quantization. However, the heavy-tailed distribution of vision transformer activations hinders the effec...
来源: 评论
CompletionFormer: Depth Completion with Convolutions and vision Transformers
CompletionFormer: Depth Completion with Convolutions and Vis...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Youmin Zhang Xianda Guo Matteo Poggi Zheng Zhu Guan Huang Stefano Mattoccia University of Bologna PhiGent Robotics
Given sparse depths and the corresponding RGB images, depth completion aims at spatially propagating the sparse measurements throughout the whole image to get a dense depth prediction. Despite the tremendous progress ...
来源: 评论
Physics-Guided ISO-Dependent Sensor Noise Modeling for Extreme Low-Light Photography
Physics-Guided ISO-Dependent Sensor Noise Modeling for Extre...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Yue Cao Ming Liu Shuai Liu Xiaotao Wang Lei Lei Wangmeng Zuo School of Computer Science and Technology Harbin Institute of Technology China Peng Cheng Laboratory China
Although deep neural networks have achieved astonishing performance in many vision tasks, existing learningbased methods are far inferior to the physical model-based solutions in extreme low-light sensor noise modelin...
来源: 评论
TimeBalance: Temporally-Invariant and Temporally-Distinctive Video Representations for Semi-Supervised Action recognition
TimeBalance: Temporally-Invariant and Temporally-Distinctive...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Ishan Rajendrakumar Dave Mamshad Nayeem Rizve Chen Chen Mubarak Shah Center for Research in Computer Vision University of Central Florida Orlando USA
Semi-Supervised Learning can be more beneficial for the video domain compared to images because of its higher an-notation cost and dimensionality. Besides, any video understanding task requires reasoning over both spa...
来源: 评论
Edges to Shapes to Concepts: Adversarial Augmentation for Robust vision
Edges to Shapes to Concepts: Adversarial Augmentation for Ro...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Aditay Tripathi Rishubh Singh Anirban Chakraborty Pradeep Shenoy CDS Indian Institute of Science Google Research India
Recent work has shown that deep vision models tend to be overly dependent on low-level or “texture” features, leading to poor generalization. Various data augmentation strategies have been proposed to overcome this ...
来源: 评论
Any-Width Networks
Any-Width Networks
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Vu, Thanh Eder, Marc Price, True Frahm, Jan-Michael Univ North Carolina Chapel Hill NC 27515 USA
Despite remarkable improvements in speed and accuracy, convolutional neural networks (CNNs) still typically operate as monolithic entities at inference time. This poses a challenge for resource-constrained practical a... 详细信息
来源: 评论
Distilling Self-Supervised vision Transformers for Weakly-Supervised Few-Shot Classification & Segmentation
Distilling Self-Supervised Vision Transformers for Weakly-Su...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Dahyun Kang Piotr Koniusz Minsu Cho Naila Murray Meta AI POSTECH Data61 ♥ CSIRO Australian National University
We address the task of weakly-supervised few-shot image classification and segmentation, by leveraging a vision Transformer (ViT) pretrained with self-supervision. Our proposed method takes token representations from ...
来源: 评论
SparseViT: Revisiting Activation Sparsity for Efficient High-Resolution vision Transformer
SparseViT: Revisiting Activation Sparsity for Efficient High...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Xuanyao Chen Zhijian Liu Haotian Tang Li Yi Hang Zhao Song Han Shanghai Qi Zhi Institute Fudan University MIT Tsinghua University
High-resolution images enable neural networks to learn richer visual representations. However, this improved performance comes at the cost of growing computational complexity, hindering their usage in latency-sensitiv...
来源: 评论
Highly Confident Local Structure Based Consensus Graph Learning for Incomplete Multi-view Clustering
Highly Confident Local Structure Based Consensus Graph Learn...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Jie Wen Chengliang Liu Gehui Xu Zhihao Wu Chao Huang Lunke Fei Yong Xu Shenzhen Key Laboratory of Visual Object Detection and Recognition Harbin Institute of Technology Shenzhen China School of Cyber Science and Technology Shenzhen Campus of Sun Yat-sen University Shenzhen China School of Computer Science and Technology Guangdong University of Technology Guangzhou China Pengcheng Laboratory Shenzhen China
Graph-based multi-view clustering has attracted extensive attention because of the powerful clustering-structure representation ability and noise robustness. Considering the reality of a large amount of incomplete dat...
来源: 评论