咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是2621-2630 订阅
排序:
Twin Contrastive Learning with Noisy Labels
Twin Contrastive Learning with Noisy Labels
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Zhizhong Huang Junping Zhang Hongming Shan Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Institute of Science and Technology for Brain-inspired Intelligence and MOE Frontiers Center for Brain Science Fudan University Shanghai China Shanghai Center for Brain Science and Brain-inspired Technology Shanghai China
Learning from noisy data is a challenging task that sig-nificantly degenerates the model performance. In this paper, we present TCL, a novel twin contrastive learning model to learn robust representations and handle n...
来源: 评论
Uncovering the Missing pattern: Unified Framework Towards Trajectory Imputation and Prediction
Uncovering the Missing Pattern: Unified Framework Towards Tr...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Yi Xu Armin Bazarjani Hyung-gun Chi Chiho Choi Yun Fu Northeastern University Honda Research Institute USA University of Southern California Purdue University Samsung Semiconductor US
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences. However, current methods often assume that the observed sequences are complete while ignoring ...
来源: 评论
DynamicDet: A Unified Dynamic Architecture for Object Detection
DynamicDet: A Unified Dynamic Architecture for Object Detect...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Zhihao Lin Yongtao Wang Jinhe Zhang Xiaojie Chu Wangxuan Institute of Computer Technology Peking University
Dynamic neural network is an emerging research topic in deep learning. With adaptive inference, dynamic models can achieve remarkable accuracy and computational efficiency. However, it is challenging to design a power...
来源: 评论
Trade-off between Robustness and Accuracy of vision Transformers
Trade-off between Robustness and Accuracy of Vision Transfor...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Yanxi Li Chang Xu Faculty of Engineering School of Computer Science The University of Sydney Australia
Although deep neural networks (DNNs) have shown great successes in computer vision tasks, they are vulnerable to perturbations on inputs, and there exists a trade-off between the natural accuracy and robustness to suc...
来源: 评论
Spatial-Frequency Mutual Learning for Face Super-Resolution
Spatial-Frequency Mutual Learning for Face Super-Resolution
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Chenyang Wang Junjun Jiang Zhiwei Zhong Xianming Liu School of Computer Science and Technology Harbin Institute of Technology Harbin China
Face super-resolution (FSR) aims to reconstruct high-resolution (HR) face images from the low-resolution (LR) ones. With the advent of deep learning, the FSR technique has achieved significant breakthroughs. However, ...
来源: 评论
PATS: Patch Area Transportation with Subdivision for Local Feature Matching
PATS: Patch Area Transportation with Subdivision for Local F...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Junjie Ni Yijin Li Zhaoyang Huang Hongsheng Li Hujun Bao Zhaopeng Cui Guofeng Zhang State Key Lab of CAD&CG Zhejiang University ZJU-SenseTime Joint Lab of 3D Vision Multimedia Laboratory The Chinese University of Hong Kong
Local feature matching aims at establishing sparse correspondences between a pair of images. Recently, detector-free methods present generally better performance but are not satisfactory in image pairs with large scal...
来源: 评论
Parts2Words: Learning Joint Embedding of Point Clouds and Texts by Bidirectional Matching Between Parts and Words
Parts2Words: Learning Joint Embedding of Point Clouds and Te...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Chuan Tang Xi Yang Bojian Wu Zhizhong Han Yi Chang School of Artificial Intelligence Jilin University China MoE Engineering Research Center of Knowledge-Driven Human-Machine Intelligence China Zhejiang University The Department of Computer Science Wayne State University USA
Shape-Text matching is an important task of high-level shape understanding. Current methods mainly represent a 3D shape as multiple 2D rendered views, which obviously can not be understood well due to the structural a...
来源: 评论
On the Importance of Accurate Geometry Data for Dense 3D vision Tasks
On the Importance of Accurate Geometry Data for Dense 3D Vis...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: HyunJun Jung Patrick Ruhkamp Guangyao Zhai Nikolas Brasch Yitong Li Yannick Verdie Jifei Song Yiren Zhou Anil Armagan Slobodan Ilic Ales Leonardis Nassir Navab Benjamin Busam Technical University of Munich 3Dwe.ai Huawei Noah's Ark Lab Siemens AG
Learning-based methods to solve dense 3D vision problems typically train on 3D sensor data. The respectively used principle of measuring distances provides advantages and drawbacks. These are typically not compared no...
来源: 评论
Towards Realistic Long-Tailed Semi-Supervised Learning: Consistency is All You Need
Towards Realistic Long-Tailed Semi-Supervised Learning: Cons...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Tong Wei Kai Gan School of Computer Science and Engineering Southeast University Nanjing China
While long-tailed semi-supervised learning (LTSSL) has received tremendous attention in many real-world classification problems, existing LTSSL algorithms typically assume that the class distributions of labeled and u...
来源: 评论
Masked Jigsaw Puzzle: A Versatile Position Embedding for vision Transformers
Masked Jigsaw Puzzle: A Versatile Position Embedding for Vis...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Bin Ren Yahui Liu Yue Song Wei Bi Rita Cucchiara Nicu Sebe Wei Wang University of Pisa Italy University of Trento Italy Tencent AI Lab China University of Modena and Reggio Emilia Italy Beijing Jiaotong University China
Position Embeddings (PEs), an arguably indispensable component in vision Transformers (ViTs), have been shown to improve the performance of ViTs on many vision tasks. However, PEs have a potentially high risk of priva...
来源: 评论