咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是2631-2640 订阅
排序:
Visual Atoms: Pre-Training vision Transformers with Sinusoidal Waves
Visual Atoms: Pre-Training Vision Transformers with Sinusoid...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Sora Takashima Ryo Hayamizu Nakamasa Inoue Hirokatsu Kataoka Rio Yokota National Institute of Advanced Industrial Science and Technology (AIST) Tokyo Institute of Technology
Formula-driven supervised learning (FDSL) has been shown to be an effective method for pre-training vision transformers, where ExFractalDB-21k was shown to exceed the pre-training effect of ImageNet-21k. These studies...
来源: 评论
NeRF-DS: Neural Radiance Fields for Dynamic Specular Objects
NeRF-DS: Neural Radiance Fields for Dynamic Specular Objects
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Zhiwen Yan Chen Li Gim Hee Lee Department of Computer Science National University of Singapore
Dynamic Neural Radiance Field (NeRF) is a powerful algorithm capable of rendering photo-realistic novel view images from a monocular RGB video of a dynamic scene. Although it warps moving points across frames from the...
来源: 评论
Effective Ambiguity Attack Against Passport-based DNN Intellectual Property Protection Schemes through Fully Connected Layer Substitution
Effective Ambiguity Attack Against Passport-based DNN Intell...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Yiming Chen Jinyu Tian Xiangyu Chen Jiantao Zhou Department of Computer and Information Science State Key Laboratory of Internet of Things for Smart City University of Macau Faculty of Innovation Engineering Macau University of Science and Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
Since training a deep neural network (DNN) is costly, the well-trained deep models can be regarded as valuable intellectual property (IP) assets. The IP protection associated with deep models has been receiving increa...
来源: 评论
Unsupervised Inference of Signed Distance Functions from Single Sparse Point Clouds without Learning Priors
Unsupervised Inference of Signed Distance Functions from Sin...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Chao Chen Yu-Shen Liu Zhizhong Han School of Software BNRist Tsinghua University Beijing China Department of Computer Science Wayne State University Detroit USA
It is vital to infer signed distance functions (SDFs) from 3D point clouds. The latest methods rely on generalizing the priors learned from large scale supervision. However, the learned priors do not generalize well t...
来源: 评论
Fine-Grained Classification with Noisy Labels
Fine-Grained Classification with Noisy Labels
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Qi Wei Lei Feng Haoliang Sun Ren Wang Chenhui Guo Yilong Yin School of Software Shandong University China School of Computer Science and Engineering Nanyang Technological University Singapore
Learning with noisy labels (LNL) aims to ensure model generalization given a label-corrupted training set. In this work, we investigate a rarely studied scenario of LNL on fine-grained datasets (LNL-FG), which is more...
来源: 评论
Joint Video Multi-Frame Interpolation and Deblurring under Unknown Exposure Time
Joint Video Multi-Frame Interpolation and Deblurring under U...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Wei Shang Dongwei Ren Yi Yang Hongzhi Zhang Kede Ma Wangmeng Zuo School of Computer Science and Technology Harbin Institute of Technology City University of Hong Kong Peng Cheng Laboratory Shenzhen
Natural videos captured by consumer cameras often suffer from low framerate and motion blur due to the combination of dynamic scene complexity, lens and sensor imperfection, and less than ideal exposure setting. As a ...
来源: 评论
Prototype-Based Embedding Network for Scene Graph Generation
Prototype-Based Embedding Network for Scene Graph Generation
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Chaofan Zheng Xinyu Lyu Lianli Gao Bo Dai Jingkuan Song School of Computer Science and Engineering University of Electronic Science and Technology of China China
Current Scene Graph Generation (SGG) methods explore contextual information to predict relationships among entity pairs. However, due to the diverse visual appearance of numerous possible subject-object combinations, ...
来源: 评论
Weakly Supervised Class-agnostic Motion Prediction for Autonomous Driving
Weakly Supervised Class-agnostic Motion Prediction for Auton...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Ruibo Li Hanyu Shi Ziang Fu Zhe Wang Guosheng Lin S-Lab Nanyang Technological University School of Computer Science and Engineering Nanyang Technological University SenseTime Research
Understanding the motion behavior of dynamic environments is vital for autonomous driving, leading to increasing attention in class-agnostic motion prediction in LiDAR point clouds. Outdoor scenes can often be decompo...
来源: 评论
Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection
Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Det...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Chang Xu Jian Ding Jinwang Wang Wen Yang Huai Yu Lei Yu Gui-Song Xia School of Electronic Information Wuhan University School of Computer Science Wuhan University
Detecting arbitrarily oriented tiny objects poses intense challenges to existing detectors, especially for label assignment. Despite the exploration of adaptive label assignment in recent oriented object detectors, th...
来源: 评论
Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly Supervised Video Anomaly Detection
Exploiting Completeness and Uncertainty of Pseudo Labels for...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Chen Zhang Guorong Li Yuankai Qi Shuhui Wang Laiyun Qing Qingming Huang Ming-Hsuan Yang State Key Laboratory of Information Security Institute of Information Engineering CAS School of Cyber Security University of Chinese Academy of Sciences School of Computer Science and Technology University of Chinese Academy of Sciences Australian Institute for Machine Learning The University of Adelaide Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS University of California Merced
Weakly supervised video anomaly detection aims to identify abnormal events in videos using only video-level labels. Recently, two-stage self-training methods have achieved significant improvements by self-generating p...
来源: 评论