咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是2651-2660 订阅
排序:
Learning to Exploit Temporal Structure for Biomedical vision-Language Processing
Learning to Exploit Temporal Structure for Biomedical Vision...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Shruthi Bannur Stephanie Hyland Qianchu Liu Fernando Pérez-García Maximilian Ilse Daniel C. Castro Benedikt Boecking Harshita Sharma Kenza Bouzid Anja Thieme Anton Schwaighofer Maria Wetscherek Matthew P. Lungren Aditya Nori Javier Alvarez-Valle Ozan Oktay Microsoft Health Futures
Self-supervised learning in vision-language processing (VLP) exploits semantic alignment between imaging and text modalities. Prior work in biomedical VLP has mostly relied on the alignment of single image and report ...
来源: 评论
Improving Multi-Target Multi-Camera Tracking by Track Refinement and Completion
Improving Multi-Target Multi-Camera Tracking by Track Refine...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Andreas Specker Lucas Florin Mickael Cormier rgen Beyerer Karlsruhe Institute of Technology Fraunhofer IOSB Fraunhofer Center for Machine Learning
Multi-camera tracking of vehicles on a city-wide level is a core component of modern traffic monitoring systems. For this task, single-camera tracking failures are the most common causes of errors concerning automatic... 详细信息
来源: 评论
On the Pitfall of Mixup for Uncertainty Calibration
On the Pitfall of Mixup for Uncertainty Calibration
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Deng-Bao Wang Lanqing Li Peilin Zhao Pheng-Ann Heng Min-Ling Zhang School of Computer Science and Engineering Southeast University Naniing China Tencent AI Lab Zhejiang Lab The Chinese University of Hong Kong
By simply taking convex combinations between pairs of samples and their labels, mixup training has been shown to easily improve predictive accuracy. It has been recently found that models trained with mixup also perfo...
来源: 评论
VILA: Learning Image Aesthetics from User Comments with vision-Language Pretraining
VILA: Learning Image Aesthetics from User Comments with Visi...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Junjie Ke Keren Ye Jiahui Yu Yonghui Wu Peyman Milanfar Feng Yang Google Research
Assessing the aesthetics of an image is challenging, as it is influenced by multiple factors including composition, color, style, and high-level semantics. Existing image aesthetic assessment (IAA) methods primarily r...
来源: 评论
Domain Agnostic Feature Learning for Image and Video Based Face Anti-spoofing
Domain Agnostic Feature Learning for Image and Video Based F...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Saha, Suman Xu, Wenhao Kanakis, Menelaos Georgoulis, Stamatios Chen, Yuhua Paudel, Danda Pani Van Gool, Luc Swiss Fed Inst Technol Zurich Switzerland Katholieke Univ Leuven Leuven Belgium
Nowadays, the increasingly growing number of mobile and computing devices has led to a demand for safer user authentication systems. Face anti-spoofing is a measure towards this direction for biometric user authentica... 详细信息
来源: 评论
Balanced Product of Calibrated Experts for Long-Tailed recognition
Balanced Product of Calibrated Experts for Long-Tailed Recog...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Emanuel Sanchez Aimar Arvi Jonnarth Michael Felsberg Marco Kuhlmann Department of Electrical Engineering Linköing University Sweden Husqvarna Group Huskvarna Sweden University of KwaZulu-Natal Durban South Africa Department of Computer and Information Science Linköping University Sweden
Many real-world recognition problems are characterized by long-tailed label distributions. These distributions make representation learning highly challenging due to limited generalization over the tail classes. If th...
来源: 评论
Reducing the Label Bias for Timestamp Supervised Temporal Action Segmentation
Reducing the Label Bias for Timestamp Supervised Temporal Ac...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Kaiyuan Liu Yunheng Li Shenglan Liu Chenwei Tan Zihang Shao School of Computer Science Dalian University of Technology China
Timestamp supervised temporal action segmentation (TSTAS) is more cost-effective than fully supervised counterparts. However, previous approaches suffer from severe label bias due to over-reliance on sparse timestamp ...
来源: 评论
PEFAT: Boosting Semi-Supervised Medical Image Classification via Pseudo-Loss Estimation and Feature Adversarial Training
PEFAT: Boosting Semi-Supervised Medical Image Classification...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Qingjie Zeng Yutong Xie Zilin Lu Yong Xia School of Computer Science and Engineering Northwestern Polytechnical University China The University of Adelaide Australia
Pseudo-labeling approaches have been proven beneficial for semi-supervised learning (SSL) schemes in computer vision and medical imaging. Most works are dedicated to finding samples with high-confidence pseudo-labels ...
来源: 评论
FAME-ViL: Multi-Tasking vision-Language Model for Heterogeneous Fashion Tasks
FAME-ViL: Multi-Tasking Vision-Language Model for Heterogene...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Xiao Han Xiatian Zhu Licheng Yu Li Zhang Yi-Zhe Song Tao Xiang CVSSP University of Surrey iFlyTek-Surrey Joint Research Centre on Artificial Intelligence Surrey Institute for People-Centred Artificial Intelligence Fudan University
In the fashion domain, there exists a variety of vision-and-language (V+L) tasks, including cross-modal retrieval, text-guided image retrieval, multi-modal classification, and image captioning. They differ drastically...
来源: 评论
Exploring Intra-class Variation Factors with Learnable Cluster Prompts for Semi-supervised Image Synthesis
Exploring Intra-class Variation Factors with Learnable Clust...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Yunfei Zhang Xiaoyang Huo Tianyi Chen Si Wu Hau San Wong School of Computer Science and Engineering South China University of Technology Peng Cheng Laboratory PAZHOU LAB Department of Computer Science City University of Hong Kong
Semi-supervised class-conditional image synthesis is typically performed by inferring and injecting class labels into a conditional Generative Adversarial Network (GAN). The supervision in the form of class identity m...
来源: 评论