咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是2671-2680 订阅
排序:
HOICLIP: Efficient Knowledge Transfer for HOI Detection with vision-Language Models
HOICLIP: Efficient Knowledge Transfer for HOI Detection with...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Shan Ning Longtian Qiu Yongfei Liu Xuming He ShanghaiTech University Shanghai China ByteDance Inc. Shanghai Engineering Research Center of Intelligent Vision and Imaging
Human-Object Interaction (HOI) detection aims to localize human-object pairs and recognize their interactions. Recently, Contrastive Language-Image Pre-training (CLIP) has shown great potential in providing interactio...
来源: 评论
Densely Self-guided Wavelet Network for Image Denoising
Densely Self-guided Wavelet Network for Image Denoising
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Liu, Wei Yan, Qiong Zhao, Yuzhi SenseTime Res Hong Kong Peoples R China Harbin Inst Technol Harbin Heilongjiang Peoples R China City Univ Hong Kong Hong Kong Peoples R China
During the past years, deep convolutional neural networks have achieved impressive success in image denoising. In this paper, we propose a densely self-guided wavelet network (DSWN) for real-world image denoising. The... 详细信息
来源: 评论
Open-Set Fine-Grained Retrieval via Prompting vision-Language Evaluator
Open-Set Fine-Grained Retrieval via Prompting Vision-Languag...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Shijie Wang Jianlong Chang Haojie Li Zhihui Wang Wanli Ouyang Qi Tian International School of Information Science & Engineering Dalian University of Technology China Huawei Cloud & AI China College of Computer and Engineering Shandong University of Science and Technology China Sense Time Computer Vision Research Group The University of Sydney Australia
Open-set fine-grained retrieval is an emerging challenge that requires an extra capability to retrieve unknown subcategories during evaluation. However, current works focus on close-set visual concepts, where all the ...
来源: 评论
Detecting Deep-Fake Videos from Phoneme-Viseme Mismatches
Detecting Deep-Fake Videos from Phoneme-Viseme Mismatches
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Agarwal, Shruti Farid, Hany Fried, Ohad Agrawala, Maneesh Univ Calif Berkeley Berkeley CA 94720 USA Stanford Univ Stanford CA 94305 USA
Recent advances in machine learning and computer graphics have made it easier to convincingly manipulate video and audio. These so-called deep-fake videos range from complete full-face synthesis and replacement (face-... 详细信息
来源: 评论
Improving Commonsense in vision-Language Models via Knowledge Graph Riddles
Improving Commonsense in Vision-Language Models via Knowledg...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Shuquan Ye Yujia Xie Dongdong Chen Yichong Xu Lu Yuan Chenguang Zhu Jing Liao City University of Hong Kong Microsoft
This paper focuses on analyzing and improving the commonsense ability of recent popular vision-language (VL) models. Despite the great success, we observe that existing VL-models still lack commonsense knowledge/reaso...
来源: 评论
DNDNet: Reconfiguring CNN for Adversarial Robustness
DNDNet: Reconfiguring CNN for Adversarial Robustness
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Goel, Akhil Agarwal, Akshay Vatsa, Mayank Singh, Richa Ratha, Nalini K. IIIT Delhi Delhi India IIT Jodhpur Jodhpur Rajasthan India IBM TJ Watson Res Ctr Yorktown Hts NY USA
Several successful adversarial attacks have demonstrated the vulnerabilities of deep learning algorithms. These attacks are detrimental in building deep learning based dependable AI applications. Therefore, it is impe... 详细信息
来源: 评论
Bilinear Parameterization For Differentiable Rank-Regularization
Bilinear Parameterization For Differentiable Rank-Regulariza...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ornhag, Marcus Valtonen Olsson, Carl Heyden, Anders Lund Univ Ctr Math Sci Lund Sweden Chalmers Univ Technol Dept Elect Engn Gothenburg Sweden
Low rank approximation is a commonly occurring problem in many computer vision and machine learning applications. There are two common ways of optimizing the resulting models. Either the set of matrices with a given r... 详细信息
来源: 评论
Unpaired Real-World Super-Resolution with Pseudo Controllable Restoration
Unpaired Real-World Super-Resolution with Pseudo Controllabl...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: André s Romero Luc Van Gool Radu Timofte Computer Vision Lab ETH Z&#x00FC rich KU Leuven University of W&#x00FC rzburg
Current super-resolution methods rely on the bicubic down-sampling assumption in order to develop the ill-posed reconstruction of the low-resolution image. Not surprisingly, these approaches fail when using real-world... 详细信息
来源: 评论
Turning Strengths into Weaknesses: A Certified Robustness Inspired Attack Framework against Graph Neural Networks
Turning Strengths into Weaknesses: A Certified Robustness In...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Binghui Wang Meng Pang Yun Dong Department of Computer Science Illinois Institute of Technology School of Mathematics and Computer Sciences Nanchang University Department of Visual and Performing Arts Education and Sciences Waubonsee Community College
Graph neural networks (GNNs) have achieved state-of-the-art performance in many graph learning tasks. However, recent studies show that GNNs are vulnerable to both test-time evasion and training-time poisoning attacks...
来源: 评论
Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo
Adaptive Patch Deformation for Textureless-Resilient Multi-V...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Yuesong Wang Zhaojie Zeng Tao Guan Wei Yang Zhuo Chen Wenkai Liu Luoyuan Xu Yawei Luo School of Computer Science & Technology Huazhong University of Science & Technology School of Computer Science & Technology Zhejiang University
In recent years, deep learning-based approaches have shown great strength in multi-view stereo because of their outstanding ability to extract robust visual features. However, most learning-based methods need to build...
来源: 评论