咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是2681-2690 订阅
排序:
Adaptive Sparse Convolutional Networks with Global Context Enhancement for Faster Object Detection on Drone Images
Adaptive Sparse Convolutional Networks with Global Context E...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Bowei Du Yecheng Huang Jiaxin Chen Di Huang State Key Laboratory of Software Development Environment Beihang University Beijing China School of Computer Science and Engineering Beihang University Beijing China Hangzhou Innovation Institute Beihang University Hangzhou China
Object detection on drone images with low-latency is an important but challenging task on the resource-constrained unmanned aerial vehicle (UAV) platform. This paper investigates optimizing the detection head based on...
来源: 评论
RMLVQA: A Margin Loss Approach For Visual Question Answering with Language Biases
RMLVQA: A Margin Loss Approach For Visual Question Answering...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Abhipsa Basu Sravanti Addepalli R. Venkatesh Babu Vision and AI Lab Indian Institute of Science Bangalore
Visual Question Answering models have been shown to suffer from language biases, where the model learns a correlation between the question and the answer, ignoring the image. While early works attempted to use questio...
来源: 评论
Teaching Structured vision & Language Concepts to vision & Language Models
Teaching Structured Vision & Language Concepts to Vision & L...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Sivan Doveh Assaf Arbelle Sivan Harary Eli Schwartz Roei Herzig Raja Giryes Rogerio Feris Rameswar Panda Shimon Ullman Leonid Karlinsky IBM Research Weizmann Institute of Science Tel-Aviv University MIT-IBM Watson AI Lab
vision and Language ( $VL$ ) models have demonstrated remarkable zero-shot performance in a variety of tasks. However, some aspects of complex language understanding still remain a challenge. We introduce the collecti...
来源: 评论
Fusing Pre-Trained Language Models with Multimodal Prompts through Reinforcement Learning
Fusing Pre-Trained Language Models with Multimodal Prompts t...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Youngjae Yu Jiwan Chung Heeseung Yun Jack Hessel Jae Sung Park Ximing Lu Rowan Zellers Prithviraj Ammanabrolu Ronan Le Bras Gunhee Kim Yejin Choi Department of Artificial Intelligence Yonsei University Department of Computer Science and Engineering Seoul National University Allen Institute for Artificial Intelligence Paul G. Allen School of Computer Science University of Washington OpenAI
Language models are capable of commonsense reasoning: while domain-specific models can learn from explicit knowledge (e.g. commonsense graphs [6] ethical norms [25]), and larger models like GPT-3 [7] mani-fest broad c...
来源: 评论
PlaneDepth: Self-Supervised Depth Estimation via Orthogonal Planes
PlaneDepth: Self-Supervised Depth Estimation via Orthogonal ...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Ruoyu Wang Zehao Yu Shenghua Gao ShanghaiTech University University of Tübingen Shanghai Engineering Research Center of Intelligent Vision and Imaging Shanghai Engineering Research Center of Energy Efficient and Custom AI IC
Multiple near frontal-parallel planes based depth representation demonstrated impressive results in self-supervised monocular depth estimation (MDE). Whereas, such a representation would cause the discontinuity of the...
来源: 评论
Towards Better Gradient Consistency for Neural Signed Distance Functions via Level Set Alignment
Towards Better Gradient Consistency for Neural Signed Distan...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Baorui Ma Junsheng Zhou Yu-Shen Liu Zhizhong Han School of Software BNRist Tsinghua University Beijing China Department of Computer Science Wayne State University Detroit USA
Neural signed distance functions (SDFs) have shown remarkable capability in representing geometry with details. However, without signed distance supervision, it is still a challenge to infer SDFs from point clouds or ...
来源: 评论
SIEDOB: Semantic Image Editing by Disentangling Object and Background
SIEDOB: Semantic Image Editing by Disentangling Object and B...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Wuyang Luo Su Yang Xinjian Zhang Weishan Zhang Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University School of Computer Science and Technology China University of Petroleum
Semantic image editing provides users with a flexible tool to modify a given image guided by a corresponding segmentation map. In this task, the features of the foreground objects and the backgrounds are quite differe...
来源: 评论
FeatER: An Efficient Network for Human Reconstruction via Feature Map-Based TransformER
FeatER: An Efficient Network for Human Reconstruction via Fe...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Ce Zheng Matias Mendieta Taojiannan Yang Guo-Jun Qi Chen Chen Center for Research in Computer Vision University of Central Florida OPPO Seattle Research Center USA Westlake University
Recently, vision transformers have shown great success in a set of human reconstruction tasks such as 2D/3D human pose estimation (2D/3D HPE) and human mesh reconstruction (HMR) tasks. In these tasks, feature map repr...
来源: 评论
Continual Hippocampus Segmentation with Transformers
Continual Hippocampus Segmentation with Transformers
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Amin Ranem Camila Gonzá lez Anirban Mukhopadhyay GRIS Technical University of Darmstadt Darmstadt Germany
In clinical settings, where acquisition conditions and patient populations change over time, continual learning is key for ensuring the safe use of deep neural networks. Yet most existing work focuses on convolutional... 详细信息
来源: 评论
MixMAE: Mixed and Masked Autoencoder for Efficient Pretraining of Hierarchical vision Transformers
MixMAE: Mixed and Masked Autoencoder for Efficient Pretraini...
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Jihao Liu Xin Huang Jinliang Zheng Yu Liu Hongsheng Li CUHK MMLab SenseTime Research CPII under InnoHK
In this paper, we propose Mixed and Masked AutoEncoder (MixMAE), a simple but efficient pretraining method that is applicable to various hierarchical vision Transformers. Existing masked image modeling (MIM) methods f...
来源: 评论