咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是261-270 订阅
排序:
Conjugate Adder Net (CAddNet) - a Space-Efficient Approximate CNN
Conjugate Adder Net (CAddNet) - a Space-Efficient Approximat...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Shen, Lulan Ziaeefard, Maryam Meyer, Brett Gross, Warren Clark, James J. McGill Univ Montreal PQ Canada
The AdderNet was recently developed as a way to implement deep neural networks without needing multiplication operations to combine weights and inputs. Instead, absolute values of the difference between weights and in... 详细信息
来源: 评论
Unseen And Adverse Outdoor Scenes recognition Through Event-based Captions
Unseen And Adverse Outdoor Scenes Recognition Through Event-...
收藏 引用
ieee/cvf International conference on computer vision (ICCV)
作者: Sakaino, Hidetomo Weathernews Inc Weather Transportat Lab Visual Recognit Grp Chiba Japan
This paper presents EventCAP, i.e., event-based captions, for refined and enriched qualitative and quantitative captions by Deep Learning (DL) models and vision Language Models (VLMs) with different tasks in a complem... 详细信息
来源: 评论
Zero-shot Learning Using Multimodal Descriptions
Zero-shot Learning Using Multimodal Descriptions
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Mall, Utkarsh Hariharan, Bharath Bala, Kavita Cornell Univ Ithaca NY 14853 USA
Zero-shot learning (ZSL) tackles the problem of recognizing unseen classes using only semantic descriptions, e.g., attributes. Current zero-shot learning techniques all assume that a single vector of attributes suffic... 详细信息
来源: 评论
StyleCineGAN: Landscape Cinemagraph Generation using a Pre-trained StyleGAN
StyleCineGAN: Landscape Cinemagraph Generation using a Pre-t...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Choi, Jongwoo Seo, Kwanggyoon Ashtari, Amirsaman Noh, Junyong Korea Adv Inst Sci & Technol Visual Media Lab Daejeon South Korea
We propose a method that can generate cinemagraphs automatically from a still landscape image using a pre-trained StyleGAN. Inspired by the success of recent unconditional video generation, we leverage a powerful pre-... 详细信息
来源: 评论
Perceptual in-Loop Filter for Image and Video Compression
Perceptual in-Loop Filter for Image and Video Compression
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wang, Huairui Ren, Guangjie Ouyang, Tong Zhang, Junxi Han, Wenwei Liu, Zizheng Chen, Zhenzhong Wuhan Univ Wuhan Peoples R China Tencent Media Lab Shenzhen Peoples R China
In this paper, we introduce our hybrid image and video compression scheme enhanced by CNN-optimized in-loop filter. Specifically, a Structure Preserving in-Loop Filter (SPiLF) is incorporated in the hybrid video codec... 详细信息
来源: 评论
Stereo Cross Global Learnable Attention Module for Stereo Image Super-Resolution
Stereo Cross Global Learnable Attention Module for Stereo Im...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Zhou, Yuanbo Xue, Yuyang Deng, Wei Nie, Ruofeng Zhang, Jiajun Pu, Jiaqi Gao, Qinquan Lan, Junlin Tong, Tong Fuzhou University China University of Edinburgh United Kingdom Imperial Vision Technology
Stereo super-resolution is a technique that utilizes corresponding information from multiple viewpoints to enhance the texture of low-resolution images. In recent years, numerous impressive works have advocated attent... 详细信息
来源: 评论
Face image quality for actor profile image curation
Face image quality for actor profile image curation
收藏 引用
23rd ieee/cvf Winter conference on Applications of computer vision (WACV)
作者: Pandya, Yash Aggarwal, Abhinav Sethu, Manivel Ahire, Laxmi Nandy, Kaustav Amazon Bangalore Karnataka India
Selecting an ideal profile image to represent a person is a common problem with many applications. The ideal characteristics of a representative or profile image differ based on the application. In this work, we focus... 详细信息
来源: 评论
Improving Deep Learning-based Automatic Checkout System Using Image Enhancement Techniques
Improving Deep Learning-based Automatic Checkout System Usin...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Pham, Long Hoang Tran, Duong Nguyen-Ngoc Nguyen, Huy-Hung Jeon, Hyung-Joon Tran, Tai Huu-Phuong Jeon, Hyung-Min Jeon, Jae Wook Sungkyunkwan University Department of Electrical and Computer Engineering Korea Republic of
The retail sector has experienced significant growth in artificial intelligence and computer vision applications, particularly with the emergence of automatic checkout (ACO) systems in stores and supermarkets. ACO sys... 详细信息
来源: 评论
Self Supervised Scanpath Prediction Framework for Painting Images
Self Supervised Scanpath Prediction Framework for Painting I...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Tliba, Marouane Kerkouri, Mohamed Amine Chetouani, Aladine Bruno, Alessandro Univ Orleans Orleans France Bournemouth Univ Poole Dorset England
In our paper, we propose a novel strategy to learn distortion invariant latent representation from painting pictures for visual attention modelling downstream task. In further detail, we design an unsupervised framewo... 详细信息
来源: 评论
Diversified and Multi-Class Controllable Industrial Defect Synthesis for Data Augmentation and Transfer
Diversified and Multi-Class Controllable Industrial Defect S...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Wei, Jing Shen, Fei Lv, Chengkan Zhang, Zhengtao Zhang, Feng Yang, Huabin Institute of Automation Chinese Academy of Sciences China The School of Artificial Intelligence University of Chinese Academy of Sciences China Casi Vision Technology CO. China
Data augmentation is crucial to solve few-sample issues in industrial inspection based on deep learning. However, current industrial data augmentation methods have not yet demonstrated on-par ability in the synthesis ... 详细信息
来源: 评论