咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是2921-2930 订阅
排序:
Why is the winner the best?
Why is the winner the best?
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Eisenmann, M. Reinke, A. Weru, V. Tizabi, M. D. Isensee, F. Adler, T. J. Ali, S. Andrearczyk, V. Aubreville, M. Baid, U. Bakas, S. Balu, N. Bano, S. Bernal, J. Bodenstedt, S. Casella, A. Cheplygina, V. Daum, M. de Bruijne, M. Depeursinge, A. Dorent, R. Egger, J. Ellis, D. G. Engelhardt, S. Ganz, M. Ghatwary, N. Girard, G. Godau, P. Gupta, A. Hansen, L. Harada, K. Heinrich, M. Heller, N. Hering, A. Huaulme, A. Jannin, P. Kavur, A. E. Kodym, O. Kozubek, M. Li, J. Li, H. Ma, J. Martin-Isla, C. Menze, B. Noble, A. Oreiller, V. Padoy, N. Pati, S. Payette, K. Raedsch, T. Rafael-Patino, J. Bawa, V. Singh Speidel, S. Sudre, C. H. van Wijnen, K. Wagner, M. Wei, D. Yamlahi, A. Yap, M. H. Yuan, C. Zenk, M. Zia, A. Zimmerer, D. Aydogan, D. Bhattarai, B. Bloch, L. Bruengel, R. Cho, J. Choi, C. Dou, Q. Ezhov, I. Friedrich, C. M. Fuller, C. Gaire, R. R. Galdran, A. Faura, A. Garcia Grammatikopoulou, M. Hong, S. Jahanifar, M. Jang, I. Kadkhodamohammadi, A. Kang, I. Kofler, F. Kondo, S. Kuijf, H. Li, M. Luu, M. Martincic, T. Morais, P. Naser, M. A. Oliveira, B. Owen, D. Pang, S. Park, J. Park, S. Plotka, S. Puybareau, E. Rajpoot, N. Ryu, K. Saeed, N. Shephard, A. Shi, P. Stepec, D. Subedi, R. Tochon, G. Torres, H. R. Urien, H. Vilaca, J. L. Wahid, K. A. Wang, H. Wang, J. Wang, L. Wang, X. Wiestler, B. Wodzinski, M. Xia, F. Xie, J. Xiong, Z. Yang, S. Yang, Y. Zhao, Z. Maier-Hein, K. Jaeger, P. F. Kopp-Schneider, A. Maier-Hein, L. German Canc Res Ctr Div Intelligent Med Syst Heidelberg Germany German Canc Res Ctr Helmholtz Imaging Heidelberg Germany Heidelberg Univ Fac Math & Comp Sci Heidelberg Germany German Canc Res Ctr Div Biostat Heidelberg Germany German Canc Res Ctr Div Med Image Comp Heidelberg Germany Univ Leeds Fac Engn & Phys Sci Sch Comp Leeds W Yorkshire England HES SO Valais Wallis Univ Appl Sci & Arts Western Inst Informat Sch Management Sierre Switzerland Lausanne Univ Hosp Dept Nucl Med & Mol Imaging Lausanne Switzerland Tech Hsch Ingolstadt Ingolstadt Germany Univ Penn Ctr Artificial Intelligence & Data Sci Integrated Philadelphia PA USA Univ Penn Ctr Biomed Image Comp & Analyt Philadelphia PA USA Univ Penn Dept Pathol & Lab Med Perelman Sch Med Philadelphia PA USA Univ Penn Dept Radiol Perelman Sch Med Philadelphia PA USA Univ Washington Dept Radiol Seattle WA USA UCL Wellcome EPSRC Ctr Intervent & Surg Sci WEISS London England UCL Dept Comp Sci London England Univ Autonoma Barcelona Barcelona Spain Comp Vis Ctr Barcelona Spain Natl Ctr Tumor Dis NCT UCC Div Translat Surg Oncol Dresden Germany Ist Italiano Tecnol Dept Adv Robot Genoa Italy Politecn Milan Dept Elect Informat & Bioengn Milan Italy IT Univ Copenhagen Copenhagen Denmark Heidelberg Univ Hosp Dept Gen Visceral & Transplantat Surg Heidelberg Germany Erasmus MC Dept Radiol & Nucl Med Biomed Imaging Grp Rotterdam Rotterdam Netherlands Univ Copenhagen Dept Comp Sci Copenhagen Denmark Univ Appl Sci Western Switzerland HES SO Inst Informat Syst Sierre Switzerland Harvard Med Sch Brigham & Womens Hosp Boston MA USA Kings Coll London Sch Biomed Engn & Imaging Sci London England Univ Hosp Essen AoR Inst Artificial Intelligence Med IKIM Essen Germany Univ Nebraska Med Ctr Omaha NE USA Heidelberg Univ Hosp Dept Internal Med 3 Heidelberg Germany Rigshosp Copenhagen Univ Hosp Neurobiol Res Unit Copenhagen Denmark Arab Acad Sci & Technol Cairo Egypt CIBM Ctr Biomed Imaging L
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t... 详细信息
来源: 评论
NTIRE 2020 Challenge on Real Image Denoising: Dataset, Methods and Results
NTIRE 2020 Challenge on Real Image Denoising: Dataset, Metho...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Abdelhamed, Abdelrahman Afifi, Mahmoud Timofte, Radu Brown, Michael S. Cao, Yue Zhang, Zhilu Zuo, Wangmeng Zhang, Xiaoling Liu, Jiye Chen, Wendong Wen, Changyuan Liu, Meng Lv, Shuailin Zhang, Yunchao Pan, Zhihong Li, Baopu Xi, Teng Fan, Yanwen Yu, Xiyu Zhang, Gang Liu, Jingtuo Han, Junyu Ding, Errui Yu, Songhyun Park, Bumjun Jeong, Jechang Liu, Shuai Zong, Ziyao Nan, Nan Li, Chenghua Yang, Zengli Bao, Long Wang, Shuangquan Bai, Dongwoon Lee, Jungwon Kim, Youngjung Rho, Kyeongha Shin, Changyeop Kim, Sungho Tang, Pengliang Zhao, Yiyun Zhou, Yuqian Fan, Yuchen Huang, Thomas Li, Zhihao Shah, Nisarg A. Liu, Wei Yan, Qiong Zhao, Yuzhi Mozejko, Marcin Latkowski, Tomasz Treszczotko, Lukasz Szafraniuk, Michal Trojanowski, Krzysztof Wu, Yanhong Michelini, Pablo Navarrete Hu, Fengshuo Lu, Yunhua Kim, Sujin Kim, Wonjin Lee, Jaayeon Choi, Jang-Hwan Zhussip, Magauiya Khassenov, Azamat Kim, Jong Hyun Cho, Hwechul Kansal, Priya Nathan, Sabari Ye, Zhangyu Lu, Xiwen Wu, Yaqi Yang, Jiangxin Cao, Yanlong Tang, Siliang Cao, Yanpeng Maggioni, Matteo Marras, Ioannis Tanay, Thomas Slabaugh, Gregory Yan, Youliang Kang, Myungjoo Choi, Han-Soo Song, Kyungmin Xu, Shusong Lu, Xiaomu Wang, Tingniao Lei, Chunxia Liu, Bin Gupta, Rajat Kumar, Vineet York Univ York N Yorkshire England Swiss Fed Inst Technol Zurich Switzerland Harbin Inst Technol Harbin Peoples R China Huawei Shenzhen Peoples R China Baidu Res Seattle WA USA Baidu Inc Dept Comp Vis Technol VIS Beijing Peoples R China Hanyang Univ Seoul South Korea North China Univ Technol Beijing Peoples R China Chinese Acad Sci Inst Automat Beijing Peoples R China Samsung Semicond Inc San Jose CA USA Agcy Def Dev Seoul South Korea Beijing Univ Posts & Telecommun Beijing Peoples R China Univ Illinois Champaign IL USA Nanjing Univ Nanjing Peoples R China Indian Inst Technol Jodhpur Rajasthan India SenseTime Res Hong Kong Peoples R China TCL Res Europe Warsaw Poland BOE Artificial Intelligence & Big Data Res Inst Beijing Peoples R China Seoul Natl Univ Seoul South Korea ST Unitas Seoul South Korea Ewha Womans Univ Seoul South Korea Couger Inc Tokyo Japan Zhejiang Univ Hangzhou Peoples R China Nanjing Univ Aeronaut & Astronaut Nanjing Peoples R China Harbin Inst Technol Shenzhen Shenzhen Peoples R China Huawei Technol Res & Dev UK Ltd Noahs Ark Lab London London England Dahua Technol Hangzhou Peoples R China Indian Inst Technol Kharagpur Kharagpur W Bengal India
This paper reviews the NTIRE 2020 challenge on real image denoising with focus on the newly introduced dataset, the proposed methods and their results. The challenge is a new version of the previous NTIRE 2019 challen... 详细信息
来源: 评论
NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods and Results
NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Eduardo Pé rez-Pellitero Sibi Catley-Chandar Richard Shaw Aleš Leonardis Radu Timofte Zexin Zhang Cen Liu Yunbo Peng Yue Lin Gaocheng Yu Jin Zhang Zhe Ma Hongbin Wang Xiangyu Chen Xintao Wang Haiwei Wu Lin Liu Chao Dong Jiantao Zhou Qingsen Yan Song Zhang Weiye Chen Yuhang Liu Zhen Zhang Yanning Zhang Javen Qinfeng Shi Dong Gong Dan Zhu Mengdi Sun Guannan Chen Yang Hu Haowei Li Baozhu Zou Zhen Liu Wenjie Lin Ting Jiang Chengzhi Jiang Xinpeng Li Mingyan Han Haoqiang Fan Jian Sun Shuaicheng Liu Juan Marí n-Vega Michael Sloth Peter Schneider-Kamp Richard Rö ttger Chunyang Li Long Bao Gang He Ziyao Xu Li Xu Gen Zhan Ming Sun Xing Wen Junlin Li Jinjing Li Chenghua Li Ruipeng Gang Fangya Li Chenming Liu Shuang Feng Fei Lei Rui Liu Junxiang Ruan Tianhong Dai Wei Li Zhan Lu Hengyan Liu Peian Huang Guangyu Ren Yonglin Luo Chang Liu Qiang Tu Sai Ma Yizhen Cao Steven Tel Barthelemy Heyrman Dominique Ginhac Chul Lee Gahyeon Kim Seonghyun Park An Gia Vien Truong Thanh Nhat Mai Howoon Yoon Tu Vo Alexander Holston Sheir Zaheer Chan Y. Park Huawei Noah&#x2019 s Ark Laboratory ETH Z&#x00FC rich University of W&#x00FC rzburg
This paper reviews the challenge on constrained high dynamic range (HDR) imaging that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2022. This manuscri... 详细信息
来源: 评论
NTIRE 2021 Challenge on Video Super-Resolution
NTIRE 2021 Challenge on Video Super-Resolution
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Sanghyun Son Suyoung Lee Seungjun Nah Radu Timofte Kyoung Mu Lee Kelvin C. K. Chan Shangchen Zhou Xiangyu Xu Chen Change Loy Boyuan Jiang Chuming Lin Yuchun Dong Donghao Luo Wenqing Chu Xiaozhong Ji Siqian Yang Ying Tai Chengjie Wang Jilin Li Feiyue Huang Chengpeng Chen Xiaojie Chu Jie Zhang Xin Lu Liangyu Chen Jing Lin Guodong Du Jia Hao Xueyi Zou Qi Zhang Lielin Jiang Xin Li He Zheng Fanglong Liu Dongliang He Fu Li Qingqing Dang Peng Yi Zhongyuan Wang Kui Jiang Junjun Jiang Jiayi Ma Yuxiang Chen Yutong Wang Ting Liu Qichao Sun Huanwei Liang Yiming Li Zekun Li Zhubo Ruan Fanjie Shang Chen Guo Haining Li Renjun Luo Longjie Shen Kassiani Zafirouli Konstantinos Karageorgos Konstantinos Konstantoudakis Anastasios Dimou Petros Daras Xiaowei Song Xu Zhuo Hanxi Liu Mengxi Guo Junlin Li Yu Li Ye Zhu Qing Wang Shijie Zhao Xiaopeng Sun Gen Zhan Tangxin Xie Yu Jia Yunhua Lu Wenhao Zhang Mengdi Sun Pablo Navarrete Michelini Xueheng Zhang Hao Jiang Zhiyu Chen Li Chen Zhiwei Xiong Zeyu Xiao Ruikang Xu Zhen Cheng Xueyang Fu Fenglong Song Zhipeng Luo Yuehan Yao Saikat Dutta Nisarg A. Shah Sourya Dipta Das Peng Zhao Yukai Shi Hongying Liu Fanhua Shang Yuanyuan Liu Fei Chen Fangxu Yu Ruisheng Gao Yixin Bai Jeonghwan Heo Shijie Yue Chenghua Li Jinjing Li Qian Zheng Ruipeng Gang Ruixia Song Seungwoo Wee Jechang Jeong Chen Li Geyingjie Wen Xinning Chai Li Song Seoul National University
Super-Resolution (SR) is a fundamental computer vision task that aims to obtain a high-resolution clean image from the given low-resolution counterpart. This paper reviews the NTIRE 2021 Challenge on Video Super-Resol... 详细信息
来源: 评论
Simultaneous Identification and Tracking of Multiple People using Video and IMUs  32
Simultaneous Identification and Tracking of Multiple People ...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Henschel, Roberto von Marcard, Timo Rosenhahn, Bodo Leibniz Univ Hannover Hannover Germany
Most modern approaches for multiple people tracking rely on human appearance to exploit similarity between person detections. In this work, we propose an alternative tracking method that does not depend on visual appe... 详细信息
来源: 评论
NTIRE 2022 Challenge on Efficient Super-Resolution: Methods and Results
NTIRE 2022 Challenge on Efficient Super-Resolution: Methods ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Yawei Li Kai Zhang Radu Timofte Luc Van Gool Fangyuan Kong Mingxi Li Songwei Liu Zongcai Du Ding Liu Chenhui Zhou Jingyi Chen Qingrui Han Zheyuan Li Yingqi Liu Xiangyu Chen Haoming Cai Yu Qiao Chao Dong Long Sun Jinshan Pan Yi Zhu Zhikai Zong Xiaoxiao Liu Zheng Hui Tao Yang Peiran Ren Xuansong Xie Xian-Sheng Hua Yanbo Wang Xiaozhong Ji Chuming Lin Donghao Luo Ying Tai Chengjie Wang Zhizhong Zhang Yuan Xie Shen Cheng Ziwei Luo Lei Yu Zhihong Wen Qi Wul Youwei Li Haoqiang Fan Jian Sun Shuaicheng Liu Yuanfei Huang Meiguang Jin Hua Huang Jing Liu Xinjian Zhang Yan Wang Lingshun Long Gen Li Yuanfan Zhang Zuowei Cao Lei Sun Panaetov Alexander Yucong Wang Minjie Cai Li Wang Lu Tian Zheyuan Wang Hongbing Ma Jie Liu Chao Chen Yidong Cai Jie Tang Gangshan Wu Weiran Wang Shirui Huang Honglei Lu Huan Liu Keyan Wang Jun Chen Shi Chen Yuchun Miao Zimo Huang Lefei Zhang Mustafa Ayazoğ lu Wei Xiong Chengyi Xiong Fei Wang Hao Li Ruimian Wen Zhijing Yang Wenbin Zou Weixin Zheng Tian Ye Yuncheng Zhang Xiangzhen Kong Aditya Arora Syed Waqas Zamir Salman Khan Munawar Hayat Fahad Shahbaz Khan Dandan Gao Dengwen Zhou Qian Ning Jingzhu Tang Han Huang Yufei Wang Zhangheng Peng Haobo Li Wenxue Guan Shenghua Gong Xin Li Jun Liu Wanjun Wang Kun Zeng Hanjiang Lin Xinyu Chen Jinsheng Fang Computer Vision Lab ETH Zurich
This paper reviews the NTIRE 2022 challenge on efficient single image super-resolution with focus on the proposed solutions and results. The task of the challenge was to super-resolve an input image with a magnificati... 详细信息
来源: 评论
SIDOD: A Synthetic Image Dataset for 3D Object Pose recognition with Distractors  32
SIDOD: A Synthetic Image Dataset for 3D Object Pose Recognit...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Jalal, Mona Spjut, Josef Boudaoud, Ben Betke, Margrit Boston Univ Boston MA 02215 USA NVIDIA Raleigh NC USA
We present a new, publicly-available image dataset generated by the NVIDIA Deep Learning Data Synthesizer intended for use in object detection, pose estimation, and tracking applications. This dataset contains 144k st... 详细信息
来源: 评论
Surrogate Contrastive Network for Supervised Band Selection in Multispectral computer vision Tasks  32
Surrogate Contrastive Network for Supervised Band Selection ...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Bernal, Edgar A. Univ Rochester Rochester Data Sci Consortium 260 E Main St Rochester NY 14604 USA
computer vision techniques that operate on hyper- and multispectral imagery benefit from the additional amount of spectral information relative to those that exploit traditional RGB or monochromatic visual data. Howev... 详细信息
来源: 评论
WiCV 2019: The Sixth Women In computer vision Workshop  32
WiCV 2019: The Sixth Women In Computer Vision Workshop
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Amerini, Irene Balashova, Elena Ebrahimi, Sayna Leonard, Kathryn Nagrani, Arsha Salvador, Amaia Univ Florence Florence Italy Princeton Univ Princeton NJ 08544 USA Univ Calif Berkeley Berkeley CA USA Occident Coll Los Angeles CA USA Univ Oxford Oxford England Univ Politen Catalunya Barcelona Spain
In this paper we present the Women in computer vision Workshop - WiCV 2019, organized in conjunction with CVPR 2019. This event is meant for increasing the visibility and inclusion of women researchers in computer vis... 详细信息
来源: 评论
Towards computer vision powered color-nutrient assessment of pureed food  32
Towards computer vision powered color-nutrient assessment of...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Pfisterer, Kaylen J. Amelard, Robert Syrnyk, Braeden Wong, Alexander Univ Waterloo Vis & Image Proc Res Grp Waterloo ON Canada Schlegel UW Res Inst Aging Waterloo ON Canada
With one in four individuals afflicted with malnutrition, computer vision may provide a way of introducing a new level of automation in the nutrition field to reliably monitor food and nutrient intake. In this study, ... 详细信息
来源: 评论