咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是3021-3030 订阅
排序:
Top-Down Networks: A coarse-to-fine reimagination of CNNs
Top-Down Networks: A coarse-to-fine reimagination of CNNs
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Ioannis Lelekas Nergis Tomen Silvia L. Pintea Jan C. van Gemert Computer Vision Lab Delft University of Technology Netherlands
Biological vision adopts a coarse-to-fine information processing pathway, from initial visual detection and binding of salient features of a visual scene, to the enhanced and preferential processing given relevant sti... 详细信息
来源: 评论
Bilinear Parameterization For Differentiable Rank-Regularization
Bilinear Parameterization For Differentiable Rank-Regulariza...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Marcus Valtonen Örnhag Carl Olsson Anders Heyden Centre for Mathematical Sciences Lund University
Low rank approximation is a commonly occurring problem in many computer vision and machine learning applications. There are two common ways of optimizing the resulting models. Either the set of matrices with a given r... 详细信息
来源: 评论
Homogeneous Linear Inequality Constraints for Neural Network Activations
Homogeneous Linear Inequality Constraints for Neural Network...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Thomas Frerix Matthias Nießner Daniel Cremers Technical University of Munich
We propose a method to impose homogeneous linear inequality constraints of the form Ax ≤ 0 on neural network activations. The proposed method allows a data-driven training approach to be combined with modeling prior ... 详细信息
来源: 评论
Multi-object Graph-based Segmentation with Non-overlapping Surfaces
Multi-object Graph-based Segmentation with Non-overlapping S...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Patrick M. Jensen Anders B. Dahl Vedrana A. Dahl Department of Applied Mathematics and Computer Science Technical University of Denmark Kgs Lyngby Denmark
For 3D images, segmentation via fitting surface meshes to object boundaries provides an efficient way to handle large images and enforce geometric prior knowledge. Furthermore, fitting such meshes with graph cuts has ... 详细信息
来源: 评论
Evaluating Scalable Bayesian Deep Learning Methods for Robust computer vision
Evaluating Scalable Bayesian Deep Learning Methods for Robus...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Fredrik K. Gustafsson Martin Danelljan Thomas B. Schon Department of Information Technology Uppsala University Sweden Computer Vision Lab ETH Zurich Switzerland
While deep neural networks have become the go-to approach in computer vision, the vast majority of these models fail to properly capture the uncertainty inherent in their predictions. Estimating this predictive uncert... 详细信息
来源: 评论
An OCR for Classical Indic Documents Containing Arbitrarily Long Words
An OCR for Classical Indic Documents Containing Arbitrarily ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Agam Dwivedi Rohit Saluja Ravi Kiran Sarvadevabhatla Centre For Visual Information Technology (CVIT) International Institute of Information Technology Hyderabad (IIIT-H) Hyderabad INDIA
OCR for printed classical Indic documents written in Sanskrit is a challenging research problem. It involves complexities such as image degradation, lack of datasets and long-length words. Due to these challenges, the... 详细信息
来源: 评论
A Multi-Level Supervision Model: A novel approach for Thermal Image Super Resolution
A Multi-Level Supervision Model: A novel approach for Therma...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Priya Kansal Sabari Nathan Couger Inc Shibuya Japan
This paper proposes a novel architecture for thermal image super-resolution. A very large dataset is provided by PBVS 2020 in their super-resolution challenge. This dataset contains the images with three different res... 详细信息
来源: 评论
A Large Dataset of Historical Japanese Documents with Complex Layouts
A Large Dataset of Historical Japanese Documents with Comple...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Zejiang Shen Kaixuan Zhang Melissa Dell Harvard University
Deep learning-based approaches for automatic document layout analysis and content extraction have the potential to unlock rich information trapped in historical documents on a large scale. One major hurdle is the lack... 详细信息
来源: 评论
Dynamic Attention-based Visual Odometry
Dynamic Attention-based Visual Odometry
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Xin-Yu Kuo Chien Liu Kai-Chen Lin Chun-Yi Lee Elsa Lab Department of Computer Science National Tsing Hua University Hsinchu Taiwan
This paper proposes a dynamic attention-based visual odometry framework (DAVO), a learning-based VO method, for estimating the ego-motion of a monocular camera. DAVO dynamically adjusts the attention weights on differ... 详细信息
来源: 评论
Capturing Cellular Topology in Multi-Gigapixel Pathology Images
Capturing Cellular Topology in Multi-Gigapixel Pathology Ima...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Wenqi Lu Simon Graham Mohsin Bilal Nasir Rajpoot Fayyaz Minhas Department of Computer Science University of Warwick UK
In computational pathology, multi-gigapixel whole slide images (WSIs) are typically divided into small patches because of their extremely large size and memory requirements. However, following this strategy, one risks... 详细信息
来源: 评论