咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是3031-3040 订阅
排序:
Vehicle Re-Identification Based on Complementary Features
Vehicle Re-Identification Based on Complementary Features
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Cunyuan Gao Yi Hu Yi Zhang Rui Yao Yong Zhou Jiaqi Zhao School of Computer Science and Technology China University of Mining and Technology China
In this work, we present our solution to the vehicle reidentification (vehicle Re-ID) track in AI City Challenge 2020 (AIC2020). The purpose of vehicle Re-ID is to retrieve the same vehicle appeared across multiple ca... 详细信息
来源: 评论
Rendering Natural Camera Bokeh Effect with Deep Learning
Rendering Natural Camera Bokeh Effect with Deep Learning
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Andrey Ignatov Jagruti Patel Radu Timofte ETH Zurich Switzerland
Bokeh is an important artistic effect used to highlight the main object of interest on the photo by blurring all out-of-focus areas. While DSLR and system camera lenses can render this effect naturally, mobile cameras... 详细信息
来源: 评论
MultiNet++: Multi-stream feature aggregation and geometric loss strategy for multi-task learning  32
MultiNet++: Multi-stream feature aggregation and geometric l...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2019
作者: Chennupati, Sumanth Sistu, Ganesh Yogamani, Senthil Rawashdeh, Samir A Valeo North America United States Valeo Vision Systems University of Michigan-Dearborn United States
Multi-task learning is commonly used in autonomous driving for solving various visual perception tasks. It offers significant benefits in terms of both performance and computational complexity. Current work on multi-t... 详细信息
来源: 评论
Fine-Grained recognition in High-throughput Phenotyping
Fine-Grained Recognition in High-throughput Phenotyping
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Beichen Lyu Stuart D. Smith Keith A. Cherkauer Purdue University West Lafayette IN
Fine-Grained recognition aims to classify sub-category objects such as bird species and car models from imagery. In High-throughput Phenotyping, the required task is to classify individual plant cultivars to assist pl... 详细信息
来源: 评论
SOFEA: A Non-iterative and Robust Optical Flow Estimation Algorithm for Dynamic vision Sensors
SOFEA: A Non-iterative and Robust Optical Flow Estimation Al...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Weng Fei Low Zhi Gao Cheng Xiang Bharath Ramesh The N.1 Institute for Health National University of Singapore
We introduce the single-shot optical flow estimation algorithm (SOFEA) to non-iteratively compute the continuous-time flow information of events produced from bio-inspired cameras such as the dynamic vision sensor (DV... 详细信息
来源: 评论
A Video Compression Framework Using an Overfitted Restoration Neural Network
A Video Compression Framework Using an Overfitted Restoratio...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Gang He Chang Wu Lei Li Jinjia Zhou Xianglin Wang Yunfei Zheng Bing Yu Weiying Xie Xi’dian University Xi’an China Graduate School of Science and Engineering Hosei Univeristy Tokyo Japan Beijing Kuaishou Technology
Many existing deep learning based video compression approaches apply deep neural networks (DNNs) to enhance the decoded video by learning the mapping between decoded video and raw video (ground truth). The big challen... 详细信息
来源: 评论
Fake News Detection using Higher-order User to User Mutual-attention Progression in Propagation Paths
Fake News Detection using Higher-order User to User Mutual-a...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Rahul Mishra University of Stavanger Norway
Social media has become a very prominent source of news consumption. It brings forth multifaceted, multimodal and real-time information on a silver platter for the users. Fake news or rumor mongering on social media i... 详细信息
来源: 评论
3D human pose estimation from multi person stereo 360◦ scenes  32
3D human pose estimation from multi person stereo 360◦ scen...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2019
作者: Shere, M. Kim, H. Hilton, A. Centre for Vision Speech and Signal Processing University of Surrey United Kingdom
This paper presents a human tracking and 3D pose estimation algorithm for use with a pair of 360◦ cameras. We identify and track an individual throughout complex, multi-person scenes in both indoor and outdoor environ... 详细信息
来源: 评论
Constraint-Aware Importance Estimation for Global Filter Pruning under Multiple Resource Constraints
Constraint-Aware Importance Estimation for Global Filter Pru...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Yu-Cheng Wu Chih-Ting Liu Bo-Ying Chen Shao-Yi Chien NTU IoX Center National Taiwan University
Filter pruning is an efficient way to structurally remove the redundant parameters in convolutional neural network, where at the same time reduces the computation, memory storage and transfer cost. Recent state-of-the... 详细信息
来源: 评论
Multiple Transfer Learning and Multi-label Balanced Training Strategies for Facial AU Detection In the Wild
Multiple Transfer Learning and Multi-label Balanced Training...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Sijie Ji Kai Wang Xiaojiang Peng Jianfei Yang Zhaoyang Zeng Yu Qiao Nanyang Technological University Singapore ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Science Sun Yat-Sen University China
This paper 1 presents SIAT-NTU solution and results of facial action unit (AU) detection in the EmotiNet Challenge 2020. The task aims to detect 23 AUs from facial images in the wild, and its main difficulties lie in... 详细信息
来源: 评论