咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是3171-3180 订阅
排序:
Deep Residual Network with Enhanced Upscaling Module for Super-Resolution  31
Deep Residual Network with Enhanced Upscaling Module for Sup...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kim, Jun-Hyuk Lee, Jong-Seok Yonsei Univ Sch Integrated Technol Seoul South Korea
Single image super-resolution (SR) have recently shown great performance thanks to the advances in deep learning. In the middle of the deep networks for SR, a part that increases image resolution is required, for whic... 详细信息
来源: 评论
Autonomous detection of disruptions in the intensive care unit using deep mask R-CNN  31
Autonomous detection of disruptions in the intensive care un...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Malhotra, Kumar Rohit Davoudi, Anis Siegel, Scott Bihorac, Azra Rashidi, Parisa Univ Florida Gainesville FL 32611 USA
Patients staying in the Intensive Care Unit (ICU) have a severely disrupted circadian rhythm. Due to patients' critical medical condition, ICU physicians and nurses have to provide round-the-clock clinical care, f... 详细信息
来源: 评论
IR2VI: Enhanced Night Environmental Perception by Unsupervised Thermal Image Translation  31
IR2VI: Enhanced Night Environmental Perception by Unsupervis...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Liu, Shuo John, Vijay Blasch, Erik Liu, Zheng Huang, Ying Univ British Columbia Vancouver BC Canada Toyota Inst Technol Nagoya Aichi Japan Air Force Res Lab Wright Patterson AFB OH USA Chongqing Univ Posts & Telecommun Chongqing Peoples R China
Context enhancement is critical for night vision (NV) applications, especially for the dark night situation without any artificial lights. In this paper, we present the infrared-to-visual (IR2VI) algorithm, a novel un... 详细信息
来源: 评论
Understanding Deep Neural Networks For Regression In Leaf Counting
Understanding Deep Neural Networks For Regression In Leaf Co...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition workshops
作者: Andrei Dobrescu Mario Valerio Giuffrida Sotirios A. Tsaftaris University of Edinburgh University of Edinburgh The Alan Turing Institute
Deep learning methods are constantly increasing in popularity and success across a wide range of computer vision applications. However, they are perceived as 'black boxes', due to the lack of an intuitive inte... 详细信息
来源: 评论
Detection of Distracted Driver using Convolutional Neural Network  31
Detection of Distracted Driver using Convolutional Neural Ne...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Baheti, Bhakti Gajre, Suhas Talbar, Sanjay SGGS Inst Engn & Technol Ctr Excellence Signal & Image Proc Nanded Maharashtra India
Number of road accidents is continuously increasing in last few years worldwide. As per the survey of National Highway Traffic Safety Administrator, nearly one in five motor vehicle crashes are caused by distracted dr... 详细信息
来源: 评论
A Digital Image Processing Pipeline for Modelling of Realistic Noise in Synthetic Images
A Digital Image Processing Pipeline for Modelling of Realist...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition workshops
作者: Oleksandra Bielova Ronny Hansch Andreas Ley Olaf Hellwich Technische Universitat Berlin
The evaluation of computer vision methods on synthetic images offers control over scene, object, and camera properties. The disadvantage is that synthetic data usually lack many of the effects of real cameras that pos... 详细信息
来源: 评论
Learning Fashion By Simulated Human Supervision  31
Learning Fashion By Simulated Human Supervision
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Alshan, Eli Alpert, Sharon Neuberger, Assaf Bubis, Nathaniel Oks, Eduard Amazon Lab126 Sunnyvale CA 94089 USA
We consider the task of predicting subjective fashion traits from images using neural networks. Specifically, we are interested in training a network for ranking outfits according to how well they fit the user. In ord... 详细信息
来源: 评论
Learning Network Architectures of Deep CNNs under Resource Constraints  31
Learning Network Architectures of Deep CNNs under Resource C...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chan, Michael Scarafoni, Daniel Duarte, Ronald Thornton, Jason Skelly, Luke MIT Lincoln Lab 244 Wood St Lexington MA 02421 USA
Recent works in deep learning have been driven broadly by the desire to attain high accuracy on certain challenge problems. The network architecture and other hyper-parameters of many published models are typically ch... 详细信息
来源: 评论
KCNN: Extremely-Efficient Hardware Keypoint Detection with a Compact Convolutional Neural Network  31
KCNN: Extremely-Efficient Hardware Keypoint Detection with a...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Di Febbo, Paolo Dal Mutto, Carlo Tieu, Kinh Mattoccia, Stefano Aquifi Inc Palo Alto CA 94303 USA Univ Bologna Bologna Italy
Keypoint detection algorithms are typically based on handcrafted combinations of derivative operations implemented with standard image filtering approaches. The early layers of Convolutional Neural Networks (CNNs) for... 详细信息
来源: 评论
Dual Graphical Models for Relational Modeling of Indoor Object Categories
Dual Graphical Models for Relational Modeling of Indoor Obje...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition workshops
作者: Lin Guo Guoliang Fan Weihua Sheng School of Electrical and Computer Engineering Oklahoma State University
There are three levels for indoor scene understanding, pixel level labeling, object level recognition and scene level holistic understanding. The three levels provide complementary bottom-up scene representation. Trad... 详细信息
来源: 评论