咨询与建议

限定检索结果

文献类型

  • 3,317 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 3,320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,915 篇 工学
    • 1,820 篇 计算机科学与技术...
    • 376 篇 软件工程
    • 142 篇 机械工程
    • 136 篇 光学工程
    • 42 篇 生物工程
    • 28 篇 信息与通信工程
    • 11 篇 控制科学与工程
    • 9 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 174 篇 理学
    • 136 篇 物理学
    • 43 篇 生物学
    • 29 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
  • 29 篇 医学
    • 28 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 15 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 1,179 篇 computer vision
  • 801 篇 conferences
  • 570 篇 training
  • 484 篇 pattern recognit...
  • 330 篇 computational mo...
  • 279 篇 computer archite...
  • 255 篇 visualization
  • 180 篇 feature extracti...
  • 160 篇 neural networks
  • 153 篇 semantics
  • 152 篇 task analysis
  • 145 篇 cameras
  • 143 篇 deep learning
  • 140 篇 three-dimensiona...
  • 139 篇 benchmark testin...
  • 126 篇 low-level vision
  • 117 篇 vision
  • 115 篇 language
  • 113 篇 image segmentati...
  • 112 篇 estimation

机构

  • 35 篇 tsinghua univ pe...
  • 34 篇 univ sci & techn...
  • 28 篇 shanghai ai lab ...
  • 26 篇 chinese univ hon...
  • 25 篇 university of sc...
  • 25 篇 tsinghua univers...
  • 24 篇 peng cheng labor...
  • 23 篇 swiss fed inst t...
  • 23 篇 swiss fed inst t...
  • 23 篇 peng cheng lab p...
  • 22 篇 zhejiang univ pe...
  • 22 篇 carnegie mellon ...
  • 20 篇 univ chinese aca...
  • 20 篇 university of ch...
  • 18 篇 harbin inst tech...
  • 18 篇 shanghai jiao to...
  • 18 篇 sensetime res pe...
  • 16 篇 hong kong univ s...
  • 15 篇 fudan univ peopl...
  • 14 篇 national key lab...

作者

  • 60 篇 timofte radu
  • 26 篇 radu timofte
  • 19 篇 van gool luc
  • 16 篇 lei lei
  • 15 篇 loy chen change
  • 15 篇 qiao yu
  • 14 篇 fan haoqiang
  • 13 篇 zhang yulun
  • 13 篇 liu shuaicheng
  • 13 篇 luc van gool
  • 12 篇 chen chen
  • 12 篇 chen wei-ting
  • 12 篇 li chongyi
  • 11 篇 wangmeng zuo
  • 11 篇 pan jinshan
  • 11 篇 marcos v. conde
  • 10 篇 wei dong
  • 10 篇 zhou shangchen
  • 10 篇 suiyi zhao
  • 10 篇 yu lei

语言

  • 3,319 篇 英文
  • 1 篇 其他
检索条件"任意字段=2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023"
3320 条 记 录,以下是311-320 订阅
排序:
BGT-Net: Bidirectional GRU Transformer Network for Scene Graph Generation
BGT-Net: Bidirectional GRU Transformer Network for Scene Gra...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Dhingra, Naina Ritter, Florian Kunz, Andreas Swiss Fed Inst Technol Innovat Ctr Virtual Real Zurich Switzerland
Scene graphs are nodes and edges consisting of objects and object-object relationships, respectively. Scene graph generation (SGG) aims to identify the objects and their relationships. We propose a bidirectional GRU (... 详细信息
来源: 评论
S2F2: Single-Stage Flow Forecasting for Future Multiple Trajectories Prediction
S2F2: Single-Stage Flow Forecasting for Future Multiple Traj...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chen, Yu-Wen Yang, Hsuan-Kung Chiu, Chu-Chi Lee, Chun-Yi Natl Tsing Hua Univ Dept Comp Sci Elsa Lab Hsinchu Taiwan
In this work, we present a single-stage framework, named S2F2, for forecasting multiple human trajectories from raw video images by predicting future optical flows. S2F2 differs from the previous two-stage approaches ... 详细信息
来源: 评论
SkipPLUS: Skip the First Few Layers to Better Explain vision Transformers
SkipPLUS: Skip the First Few Layers to Better Explain Vision...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Mehri, Faridoun Fayyaz, Mohsen Baghshah, Mahdieh Soleymani Pilehvar, Mohammad Taher Sharif Univ Technol Tehran Iran Univ Tehran Tehran Iran Cardiff Univ Cardiff Wales
Despite their remarkable performance, the explainability of vision Transformers (ViTs) remains a challenge. While forward attention-based token attribution techniques have become popular in text processing, their suit... 详细信息
来源: 评论
Disguised Faces in the Wild  31
Disguised Faces in the Wild
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kushwaha, Vineet Singh, Maneet Singh, Richa Vatsa, Mayank Ratha, Nalini Chellappa, Rama IIIT Delhi Delhi India IBM TJ Watson Res Ctr Ossining NY USA Univ Maryland College Pk MD 20742 USA
Existing research in the field of face recognition with variations due to disguises focuses primarily on images captured in controlled settings. Limited research has been performed on images captured in unconstrained ... 详细信息
来源: 评论
Searching for Efficient Neural Architectures for On-Device ML on Edge TPUs
Searching for Efficient Neural Architectures for On-Device M...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Akin, Berkin Gupta, Suyog Long, Yun Spiridonov, Anton Wang, Zhuo White, Marie Xu, Hao Zhou, Ping Zhou, Yanqi
On-device ML accelerators are becoming a standard in modern mobile system-on-chips (SoC). Neural architecture search (NAS) comes to the rescue for efficiently utilizing the high compute throughput offered by these acc... 详细信息
来源: 评论
Improving In-field Cassava Whitefly Pest Surveillance with Machine Learning
Improving In-field Cassava Whitefly Pest Surveillance with M...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Tusubira, Jeremy Francis Nsumba, Solomon Ninsiima, Flavia Akera, Benjamin Acellam, Guy Nakatumba, Joyce Mwebaze, Ernest Quinn, John Oyana, Tonny Makerere Univ Artificial Intelligence Lab Kampala Uganda Google Res Mountain View CA USA Makerere Univ Geospatial Data & Computat Intelligence Lab Kampala Uganda
Whiteflies are the major vector responsible for the transmission of cassava related diseases in tropical environments, and knowing the numbers of whiteflies is key in detecting and identifying their spread and prevent... 详细信息
来源: 评论
M2SGD: Learning to Learn ImportantWeights
M<SUP>2</SUP>SGD: Learning to Learn ImportantWeights
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kuo, Nicholas I-Hsien Harandi, Mehrtash Fourrier, Nicolas Walder, Christian Ferraro, Gabriela Suominen, Hanna Australian Natl Univ RSCS Canberra ACT Australia Monash Univ ECSE Clayton Vic Australia CSIRO Data61 Canberra ACT Australia Vole Univ Leonard de Vinci Paris France Univ Turku Dept Future Technol Turku Finland
Meta-learning concerns rapid knowledge acquisition. One popular approach cast optimisation as a learning problem and it has been shown that learnt neural optimisers updated base learners more quickly than their hand-c... 详细信息
来源: 评论
ADNet: Attention-guided Deformable Convolutional Network for High Dynamic Range Imaging
ADNet: Attention-guided Deformable Convolutional Network for...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Liu, Zhen Lin, Wenjie Li, Xinpeng Rao, Qing Jiang, Ting Han, Mingyan Fan, Haoqiang Sun, Jian Liu, Shuaicheng Megvii Technol Beijing Peoples R China Sichuan Univ Chengdu Peoples R China Univ Elect Sci & Technol China Chengdu Peoples R China
In this paper, we present an attention-guided deformable convolutional network for hand-held multi frame high dynamic range (HDR) imaging, namely ADNet. This problem comprises two intractable challenges of how to hand... 详细信息
来源: 评论
Deep Fusion of Appearance and Frame Differencing for Motion Segmentation
Deep Fusion of Appearance and Frame Differencing for Motion ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ellenfeld, Marc Moosbauer, Sebastian Cardenes, Ruben Klauck, Ulrich Teutsch, Michael Hensoldt Optron GmbH Oberkochen Germany Hensoldt Analyt GmbH Oberkochen Germany Aalen Univ Appl Sci Aalen Germany Univ Western Cape Cape Town South Africa
Motion segmentation is a technique to detect and localize class-agnostic motion in videos. This motion is assumed to be relative to a stationary background and usually originates from objects such as vehicles or human... 详细信息
来源: 评论
Semantic Binary Segmentation using Convolutional Networks without Decoders  31
Semantic Binary Segmentation using Convolutional Networks wi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Aich, Shubhra van der Kamp, William Stavness, Ian Univ Saskatchewan Dept Comp Sci Saskatoon SK Canada
In this paper, we propose an efficient architecture for semantic image segmentation using the depth-to-space (D2S) operation. Our D2S model is comprised of a standard CNN encoder followed by a depth-to-space reorderin... 详细信息
来源: 评论