咨询与建议

限定检索结果

文献类型

  • 15,847 篇 会议
  • 204 篇 期刊文献
  • 147 册 图书
  • 1 篇 专利

馆藏范围

  • 16,199 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9,992 篇 工学
    • 8,671 篇 计算机科学与技术...
    • 6,594 篇 软件工程
    • 3,105 篇 信息与通信工程
    • 2,988 篇 光学工程
    • 2,499 篇 生物工程
    • 1,545 篇 控制科学与工程
    • 1,484 篇 生物医学工程(可授...
    • 1,163 篇 电气工程
    • 851 篇 电子科学与技术(可...
    • 618 篇 化学工程与技术
    • 561 篇 安全科学与工程
    • 538 篇 机械工程
    • 469 篇 网络空间安全
    • 398 篇 交通运输工程
    • 342 篇 仪器科学与技术
    • 278 篇 材料科学与工程(可...
  • 5,905 篇 理学
    • 2,951 篇 物理学
    • 2,562 篇 生物学
    • 1,892 篇 数学
    • 675 篇 化学
    • 663 篇 统计学(可授理学、...
  • 2,179 篇 管理学
    • 1,288 篇 图书情报与档案管...
    • 1,022 篇 管理科学与工程(可...
    • 408 篇 工商管理
  • 1,625 篇 医学
    • 1,456 篇 临床医学
    • 890 篇 基础医学(可授医学...
    • 759 篇 药学(可授医学、理...
    • 260 篇 公共卫生与预防医...
  • 344 篇 农学
    • 337 篇 作物学
  • 302 篇 法学
    • 280 篇 社会学
  • 165 篇 经济学
  • 135 篇 教育学
  • 65 篇 文学
  • 38 篇 军事学
  • 2 篇 哲学
  • 2 篇 历史学
  • 2 篇 艺术学

主题

  • 1,288 篇 computer vision
  • 781 篇 deep learning
  • 486 篇 image segmentati...
  • 413 篇 image processing
  • 386 篇 object detection
  • 360 篇 image enhancemen...
  • 338 篇 feature extracti...
  • 303 篇 convolutional ne...
  • 299 篇 image classifica...
  • 275 篇 machine learning
  • 203 篇 training
  • 200 篇 computational mo...
  • 198 篇 signal processin...
  • 196 篇 image recognitio...
  • 168 篇 visualization
  • 163 篇 neural networks
  • 158 篇 artificial intel...
  • 153 篇 convolution
  • 150 篇 face recognition
  • 132 篇 generative adver...

机构

  • 54 篇 chitkara univers...
  • 41 篇 peng cheng labor...
  • 39 篇 university of ch...
  • 38 篇 school of comput...
  • 31 篇 university of sc...
  • 31 篇 tsinghua univers...
  • 30 篇 the islamic univ...
  • 26 篇 college of compu...
  • 26 篇 college of compu...
  • 25 篇 school of comput...
  • 24 篇 shanghai jiao to...
  • 23 篇 school of electr...
  • 21 篇 college of compu...
  • 21 篇 shenzhen interna...
  • 21 篇 school of comput...
  • 20 篇 school of comput...
  • 19 篇 centre of interd...
  • 19 篇 department of co...
  • 19 篇 national univers...
  • 19 篇 shanghai ai labo...

作者

  • 18 篇 li li
  • 18 篇 chen chen
  • 18 篇 yang yang
  • 16 篇 lee sung-hak
  • 16 篇 liu yang
  • 14 篇 jia zhenhong
  • 14 篇 li yang
  • 14 篇 kim young-choon
  • 13 篇 hao zhang
  • 13 篇 luc van gool
  • 12 篇 luo xiaonan
  • 12 篇 zhou gang
  • 12 篇 zhang bo
  • 11 篇 yulun zhang
  • 11 篇 wang wei
  • 10 篇 li xin
  • 10 篇 zhang lei
  • 10 篇 wang jing
  • 10 篇 chen dong
  • 10 篇 liu lei

语言

  • 15,959 篇 英文
  • 224 篇 其他
  • 99 篇 中文
  • 3 篇 土耳其文
  • 2 篇 西班牙文
检索条件"任意字段=2023 International Conference on Image Processing and Computer Vision, IPCV 2023"
16199 条 记 录,以下是171-180 订阅
排序:
Downscaled Representation Matters: Improving image Rescaling with Collaborative Downscaled images
Downscaled Representation Matters: Improving Image Rescaling...
收藏 引用
IEEE/CVF international conference on computer vision (ICCV)
作者: Xu, Bingna Guo, Yong Jiang, Luoqian Yu, Mianjie Chen, Jian South China Univ Technol Guangzhou Peoples R China
Deep networks have achieved great success in image rescaling (IR) task that seeks to learn the optimal downscaled representations, i.e., low-resolution (LR) images, to reconstruct the original high-resolution (HR) ima...
来源: 评论
Removing Adverse Background Shortcut with Text for Few-Shot Classification  2
Removing Adverse Background Shortcut with Text for Few-Shot ...
收藏 引用
2nd international conference on image processing, computer vision and Machine Learning, ICICML 2023
作者: Deng, Yuhui Dong, Le University of Electronic Science and Technology of China School of Computer Science and Technology Chengdu China
Few-shot image classification is to categorize novel classes with limited training instances. A key hurdle in few-shot image classification arises from the disjoint nature of training and testing categories, which res... 详细信息
来源: 评论
Design and Research on Intelligent Construction Technology Based on computer vision  4
Design and Research on Intelligent Construction Technology B...
收藏 引用
4th international conference on Artificial Intelligence and computer Engineering, ICAICE 2023
作者: Zhang, Yuhui Lv, Mengdi Sun, Qiming Tianjin University Tianjin300072 China Southeast University Architectural Design and Research Institute Co. Ltd Jiangsu Nanjing210096 China Swiss Federal Institute of Technology in Zurich Stefano-Franscini Platz 1 ZurichCH-8093 Switzerland
This paper aims to study the intelligent construction technology based on computer vision, which applies image processing and analysis technology in the construction process to improve construction efficiency and qual... 详细信息
来源: 评论
With a Little Help from your own Past: Prototypical Memory Networks for image Captioning
With a Little Help from your own Past: Prototypical Memory N...
收藏 引用
IEEE/CVF international conference on computer vision (ICCV)
作者: Barraco, Manuele Sarto, Sara Cornia, Marcella Baraldi, Lorenzo Cucchiara, Rita Univ Modena & Reggio Emilia Modena Italy IIT CNR Pisa Italy
image captioning, like many tasks involving vision and language, currently relies on Transformer-based architectures for extracting the semantics in an image and translating it into linguistically coherent description...
来源: 评论
Research on Detection of Moldy Corn Kernels Based on Machine vision  7
Research on Detection of Moldy Corn Kernels Based on Machine...
收藏 引用
7th international conference on Electrical, Mechanical and computer Engineering, ICEMCE 2023
作者: Chen, Yuanqi Zhang, Ning Liu, Ziyang Ye, Xinwei Xijing University Xi'an China
Corn plays an important role in many fields, but the level of intelligent detection for moldy corn is low. This article proposes a method for identifying moldy corn kernels based on machine vision. First, the image is... 详细信息
来源: 评论
Diff-Retinex: Rethinking Low-light image Enhancement with A Generative Diffusion Model
Diff-Retinex: Rethinking Low-light Image Enhancement with A ...
收藏 引用
IEEE/CVF international conference on computer vision (ICCV)
作者: Yi, Xunpeng Xu, Han Zhang, Hao Tang, Linfeng Ma, Jiayi Wuhan Univ Elect Informat Sch Wuhan 430072 Peoples R China
In this paper, we rethink the low-light image enhancement task and propose a physically explainable and generative diffusion model for low-light image enhancement, termed as Diff-Retinex. We aim to integrate the advan...
来源: 评论
On the Application of Log Compression and Enhanced Denoising in Contrast Enhancement of Digital Radiography images  8th
On the Application of Log Compression and Enhanced Denoising...
收藏 引用
8th international conference on computer vision and image processing (CVIP)
作者: Asif, M. S. Panicker, Mahesh Raveendranatha Indian Inst Technol Palakkad Ctr Computat Imaging Palakkad India Indian Inst Technol Palakkad Dept Elect Engn Palakkad India
Digital radiography (DR) is becoming popular for the point of care imaging in the recent past. To reduce the radiation exposure, controlled radiation based on as low as reasonably achievable (ALARA) principle is emplo... 详细信息
来源: 评论
Masked Diffusion Transformer is a Strong image Synthesizer
Masked Diffusion Transformer is a Strong Image Synthesizer
收藏 引用
IEEE/CVF international conference on computer vision (ICCV)
作者: Gao, Shanghua Zhou, Pan Cheng, Ming-Ming Yan, Shuicheng Nankai Univ Tianjin Peoples R China Sea AI Lab Singapore Singapore
Despite its success in image synthesis, we observe that diffusion probabilistic models (DPMs) often lack contextual reasoning ability to learn the relations among object parts in an image, leading to a slow learning p...
来源: 评论
The Impact of Parameters on the Efficiency of Keypoints Detection and Description  13
The Impact of Parameters on the Efficiency of Keypoints Dete...
收藏 引用
13th IEEE international conference on Electronics and Information Technologies, ELIT 2023
作者: Fesiuk, Andriy Furgala, Yuriy Department of Electronics and Computer Technologies Ivan Franko National University of Lviv Lviv Ukraine
This paper comprehensively investigates the efficiency and performance of the keypoints detection and description methods in computer vision and image processing. Four widely used methods - SIFT, SURF, ORB, and BRISK ... 详细信息
来源: 评论
LLIEFORMER: A LOW-LIGHT image ENHANCEMENT TRANSFORMER NETWORK WITH A DEGRADED RESTORATION MODEL  30
LLIEFORMER: A LOW-LIGHT IMAGE ENHANCEMENT TRANSFORMER NETWOR...
收藏 引用
30th IEEE international conference on image processing (ICIP)
作者: Yi, Xunpeng Wang, Yuxuan Zhao, Yizhen Yan, Jia Zhang, Weixia Wuhan Univ Elect Informat Sch Wuhan Peoples R China Shanghai Jiao Tong Univ MoE Key Lab Artificial Intelligence Shanghai Peoples R China
Low-light image enhancement aims at improving human perception or the effectiveness of computer vision tasks of images taken in dark. The low-light images are usually seriously lack in visual information. To tackle th... 详细信息
来源: 评论