咨询与建议

限定检索结果

文献类型

  • 11,886 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 11,891 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,060 篇 工学
    • 7,618 篇 计算机科学与技术...
    • 796 篇 机械工程
    • 688 篇 电气工程
    • 361 篇 软件工程
    • 228 篇 控制科学与工程
    • 41 篇 光学工程
    • 19 篇 生物工程
    • 17 篇 信息与通信工程
    • 12 篇 生物医学工程(可授...
    • 7 篇 交通运输工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 5 篇 仪器科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 安全科学与工程
    • 4 篇 土木工程
  • 3,347 篇 医学
    • 3,346 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 254 篇 理学
    • 198 篇 系统科学
    • 32 篇 物理学
    • 21 篇 生物学
    • 19 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 17 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 5,633 篇 computer vision
  • 2,668 篇 training
  • 2,203 篇 pattern recognit...
  • 1,747 篇 computational mo...
  • 1,502 篇 visualization
  • 1,360 篇 three-dimensiona...
  • 1,074 篇 semantics
  • 999 篇 benchmark testin...
  • 986 篇 codes
  • 959 篇 computer archite...
  • 892 篇 deep learning
  • 777 篇 conferences
  • 754 篇 task analysis
  • 700 篇 feature extracti...
  • 561 篇 transformers
  • 533 篇 face recognition
  • 527 篇 neural networks
  • 495 篇 object detection
  • 490 篇 image segmentati...
  • 468 篇 cameras

机构

  • 174 篇 univ sci & techn...
  • 145 篇 carnegie mellon ...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 134 篇 chinese univ hon...
  • 110 篇 zhejiang univ pe...
  • 109 篇 peng cheng lab p...
  • 99 篇 swiss fed inst t...
  • 91 篇 tsinghua univers...
  • 90 篇 shanghai ai lab ...
  • 87 篇 sensetime res pe...
  • 86 篇 shanghai jiao to...
  • 83 篇 zhejiang univers...
  • 82 篇 tech univ munich...
  • 79 篇 university of sc...
  • 79 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 australian natl ...
  • 76 篇 alibaba grp peop...
  • 75 篇 peng cheng labor...

作者

  • 75 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 37 篇 loy chen change
  • 36 篇 tao dacheng
  • 32 篇 zhou jie
  • 31 篇 chen chen
  • 30 篇 liu yang
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 29 篇 zha zheng-jun
  • 28 篇 li xin
  • 27 篇 qi tian
  • 26 篇 vasconcelos nuno
  • 25 篇 liu xiaoming
  • 25 篇 darrell trevor
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping
  • 24 篇 ying shan

语言

  • 11,849 篇 英文
  • 41 篇 其他
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024"
11891 条 记 录,以下是1061-1070 订阅
排序:
Seeing What You Miss: vision-Language Pre-training with Semantic Completion Learning
Seeing What You Miss: Vision-Language Pre-training with Sema...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ji, Yatai Tu, Rongcheng Jiang, Jie Kong, Weijie Cai, Chengfei Zhao, Wenzhe Wang, Hongfa Yang, Yujiu Liu, Wei Tsinghua Univ Beijing Peoples R China Tencent Shenzhen Guangdong Peoples R China
Cross-modal alignment is essential for vision-language pre-training (VLP) models to learn the correct corresponding information across different modalities. For this purpose, inspired by the success of masked language... 详细信息
来源: 评论
Difficulty-based Sampling for Debiased Contrastive Representation Learning
Difficulty-based Sampling for Debiased Contrastive Represent...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Jang, Taeuk Wang, Xiaoqian Purdue Univ 465 Northwestern Ave W Lafayette IN 47907 USA
Contrastive learning is a self-supervised representation learning method that achieves milestone performance in various classification tasks. However, due to its unsupervised fashion, it suffers from the false negativ... 详细信息
来源: 评论
EDA: Explicit Text-Decoupling and Dense Alignment for 3D Visual Grounding
EDA: Explicit Text-Decoupling and Dense Alignment for 3D Vis...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wu, Yanmin Cheng, Xinhua Zhang, Renrui Cheng, Zesen Zhang, Jian Peking Univ Shenzhen Grad Sch Shenzhen Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Shanghai AI Lab Shanghai Peoples R China
3D visual grounding aims to find the object within point clouds mentioned by free-form natural language descriptions with rich semantic cues. However, existing methods either extract the sentence-level features coupli... 详细信息
来源: 评论
Parts2Words: Learning Joint Embedding of Point Clouds and Texts by Bidirectional Matching between Parts and Words
Parts2Words: Learning Joint Embedding of Point Clouds and Te...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Tang, Chuan Yang, Xi Wu, Bojian Han, Zhizhong Chang, Yi Jilin Univ Sch Artificial Intelligence Jilin Peoples R China Zhejiang Univ Hangzhou Peoples R China Wayne State Univ Dept Comp Sci Wayne NJ USA MoE Engn Res Ctr Knowledge Driven Human Machine Intel Beijing Peoples R China
Shape-Text matching is an important task of high-level shape understanding. Current methods mainly represent a 3D shape as multiple 2D rendered views, which obviously can not be understood well due to the structural a... 详细信息
来源: 评论
A Large-scale Robustness Analysis of Video Action recognition Models
A Large-scale Robustness Analysis of Video Action Recognitio...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Schiappa, Madeline Chantry Biyani, Naman Kamtam, Prudvi Vyas, Shruti Palangi, Hamid Vineet, Vibhav Rawat, Yogesh Univ Cent Florida CRCV Orlando FL 32816 USA IIT Kanpur Kanpur Uttar Pradesh India Microsoft Res Redmond WA USA
We have seen a great progress in video action recognition in recent years. There are several models based on convolutional neural network (CNN) and some recent transformer based approaches which provide top performanc... 详细信息
来源: 评论
Interpretable Object recognition by Semantic Prototype Analysis
Interpretable Object Recognition by Semantic Prototype Analy...
收藏 引用
ieee/cvf Winter conference on Applications of computer vision (WACV)
作者: Wan, Qiyang Wang, Ruiping Chen, Xilin Chinese Acad Sci Key Lab Intelligent Informat Proc Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China
People can usually give reasons for recognizing a particular object as a specific category, using various means such as body language (by pointing out) and natural language (by telling). This inspires us to develop a ... 详细信息
来源: 评论
Event-based Video Frame Interpolation with Cross-Modal Asymmetric Bidirectional Motion Fields
Event-based Video Frame Interpolation with Cross-Modal Asymm...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kim, Taewoo Chae, Yujeong Jang, Hyun-Kurl Yoon, Kuk-Jin Korea Adv Inst Sci & Technol Daejeon South Korea
Video Frame Interpolation (VFI) aims to generate intermediate video frames between consecutive input frames. Since the event cameras are bio-inspired sensors that only encode brightness changes with a micro-second tem... 详细信息
来源: 评论
Bridging Precision and Confidence: A Train-Time Loss for Calibrating Object Detection
Bridging Precision and Confidence: A Train-Time Loss for Cal...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Munir, Muhammad Akhtar Khan, Muhammad Haris Khan, Salman Khan, Fahad Shahhaz Mohamed Bin Zayed Univ AI Abu Dhabi U Arab Emirates Informat Technol Univ Lahore Pakistan Australian Natl Univ Canberra ACT Australia Linkoping Univ Linkoping Sweden
Deep neural networks (DNNs) have enabled astounding progress in several vision-based problems. Despite showing high predictive accuracy, recently, several works have revealed that they tend to provide overconfident pr... 详细信息
来源: 评论
Correspondence Transformers with Asymmetric Feature Learning and Matching Flow Super-Resolution
Correspondence Transformers with Asymmetric Feature Learning...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Sun, Yixuan Zhao, Dongyang Yin, Zhangyue Huang, Yiwen Gui, Tao Zhang, Wenqiang Ge, Weifeng Fudan Univ Acad Engn & Technol Shanghai Peoples R China Fudan Univ Sch Comp Sci Shanghai Peoples R China
This paper solves the problem of learning dense visual correspondences between different object instances of the same category with only sparse annotations. We decompose this pixel-level semantic matching problem into... 详细信息
来源: 评论
Improved Test-Time Adaptation for Domain Generalization
Improved Test-Time Adaptation for Domain Generalization
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Liang Zhang, Yong Song, Yibing Shan, Ying Liu, Lingqiao Univ Adelaide Adelaide SA Australia Tencent AI Lab Shenzhen Peoples R China Fudan Univ AI3 Inst Shanghai Peoples R China
The main challenge in domain generalization (DG) is to handle the distribution shift problem that lies between the training and test data. Recent studies suggest that test-time training (TTT), which adapts the learned... 详细信息
来源: 评论