咨询与建议

限定检索结果

文献类型

  • 11,884 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 11,889 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,055 篇 工学
    • 7,613 篇 计算机科学与技术...
    • 796 篇 机械工程
    • 688 篇 电气工程
    • 356 篇 软件工程
    • 225 篇 控制科学与工程
    • 40 篇 光学工程
    • 19 篇 生物工程
    • 17 篇 信息与通信工程
    • 12 篇 生物医学工程(可授...
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 交通运输工程
    • 5 篇 仪器科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 安全科学与工程
    • 4 篇 土木工程
  • 3,344 篇 医学
    • 3,343 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 250 篇 理学
    • 198 篇 系统科学
    • 29 篇 物理学
    • 21 篇 生物学
    • 15 篇 数学
    • 9 篇 统计学(可授理学、...
    • 4 篇 化学
  • 17 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 5,633 篇 computer vision
  • 2,668 篇 training
  • 2,203 篇 pattern recognit...
  • 1,747 篇 computational mo...
  • 1,502 篇 visualization
  • 1,360 篇 three-dimensiona...
  • 1,074 篇 semantics
  • 999 篇 benchmark testin...
  • 986 篇 codes
  • 959 篇 computer archite...
  • 891 篇 deep learning
  • 777 篇 conferences
  • 754 篇 task analysis
  • 700 篇 feature extracti...
  • 561 篇 transformers
  • 533 篇 face recognition
  • 527 篇 neural networks
  • 495 篇 object detection
  • 490 篇 image segmentati...
  • 468 篇 cameras

机构

  • 174 篇 univ sci & techn...
  • 145 篇 carnegie mellon ...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 134 篇 chinese univ hon...
  • 110 篇 zhejiang univ pe...
  • 109 篇 peng cheng lab p...
  • 99 篇 swiss fed inst t...
  • 91 篇 tsinghua univers...
  • 90 篇 shanghai ai lab ...
  • 87 篇 sensetime res pe...
  • 86 篇 shanghai jiao to...
  • 83 篇 zhejiang univers...
  • 82 篇 tech univ munich...
  • 79 篇 university of sc...
  • 79 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 australian natl ...
  • 76 篇 alibaba grp peop...
  • 75 篇 peng cheng labor...

作者

  • 75 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 37 篇 loy chen change
  • 36 篇 tao dacheng
  • 32 篇 zhou jie
  • 31 篇 chen chen
  • 30 篇 liu yang
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 29 篇 zha zheng-jun
  • 28 篇 li xin
  • 27 篇 qi tian
  • 26 篇 vasconcelos nuno
  • 25 篇 liu xiaoming
  • 25 篇 darrell trevor
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping
  • 24 篇 ying shan

语言

  • 11,863 篇 英文
  • 25 篇 其他
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024"
11889 条 记 录,以下是111-120 订阅
排序:
Streaming Dense Video Captioning
Streaming Dense Video Captioning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhou, Xingyi Arnab, Anurag Buch, Shyamal Yan, Shen Myers, Austin Xiong, Xuehan Nagrani, Arsha Schmid, Cordelia Google Mountain View CA 94043 USA
An ideal model for dense video captioning - predicting captions localized temporally in a video - should be able to handle long input videos, predict rich, detailed textual descriptions, and be able to produce outputs... 详细信息
来源: 评论
Emu Edit: Precise Image Editing via recognition and Generation Tasks
Emu Edit: Precise Image Editing via Recognition and Generati...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Sheynin, Shelly Polyak, Adam Singer, Uriel Kirstain, Yuval Zohar, Amit Ashual, Oron Parikh, Devi Taigman, Yaniv Meta GenAI Menlo Pk CA 94025 USA
Instruction-based image editing holds immense potential for a variety of applications, as it enables users to perform any editing operation using a natural language instruction. However, current models in this domain ...
来源: 评论
Learning by Correction: Efficient Tuning Task for Zero-Shot Generative vision-Language Reasoning
Learning by Correction: Efficient Tuning Task for Zero-Shot ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Rongjie Wu, Yu He, Xuming ShanghaiTech Univ Sch Informat Sci & Technol Shanghai Peoples R China Shanghai Engn Res Ctr Intelligent Vis & Imaging Shanghai Peoples R China
Generative vision-language models (VLMs) have shown impressive performance in zero-shot vision-language tasks like image captioning and visual question answering. However, improving their zero-shot reasoning typically... 详细信息
来源: 评论
InstructDiffusion: A Generalist Modeling Interface for vision Tasks
InstructDiffusion: A Generalist Modeling Interface for Visio...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Geng, Zigang Yang, Binxin Hang, Tiankai Li, Chen Gu, Shuyang Zhang, Ting Bao, Jianmin Zhang, Zheng Li, Houqiang Hu, Han Chen, Dong Guo, Baining Univ Sci & Technol China Hefei Anhui Peoples R China Southeast Univ Nanjing Jiangsu Peoples R China Xi An Jiao Tong Univ Xian Shaanxi Peoples R China Beijing Normal Univ Beijing Peoples R China Microsoft Res Asia Redmond WA 98052 USA
We present InstructDiffusion, a unified and generic framework for aligning computer vision tasks with human instructions. Unlike existing approaches that integrate prior knowledge and pre-define the output space (e.g.... 详细信息
来源: 评论
GSNeRF: Generalizable Semantic Neural Radiance Fields with Enhanced 3D Scene Understanding
GSNeRF: Generalizable Semantic Neural Radiance Fields with E...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chou, Zi-Ting Huang, Sheng-Yu Liu, I-Jieh Wang, Yu-Chiang Frank Natl Taiwan Univ Grad Inst Commun Engn Taipei Taiwan NVIDIA Taipei Taiwan
Utilizing multi-view inputs to synthesize novel-view images, Neural Radiance Fields (NeRF) have emerged as a popular research topic in 3D vision. In this work, we introduce a Generalizable Semantic Neural Radiance Fie... 详细信息
来源: 评论
Optimal Transport Aggregation for Visual Place recognition
Optimal Transport Aggregation for Visual Place Recognition
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Izquierdo, Sergio Civera, Javier Univ Zaragoza I3A Zaragoza Spain
The task of Visual Place recognition (VPR) aims to match a query image against references from an extensive database of images from different places, relying solely on visual cues. State-of-the-art pipelines focus on ... 详细信息
来源: 评论
Consistency and Uncertainty: Identifying Unreliable Responses From Black-Box vision-Language Models for Selective Visual Question Answering
Consistency and Uncertainty: Identifying Unreliable Response...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Khan, Zaid Fu, Yun Northeastern Univ Boston MA 02115 USA
The goal of selective prediction is to allow an a model to abstain when it may not be able to deliver a reliable prediction, which is important in safety-critical contexts. Existing approaches to selective prediction ... 详细信息
来源: 评论
IrrNet: Spatio-Temporal Segmentation guided Classification for Irrigation Mapping
IrrNet: Spatio-Temporal Segmentation guided Classification f...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hoque, Oishee Bintey Univ Virginia Dept Comp Sci Charlottesville VA 22903 USA
Irrigation systems can vary widely in scale, from smallscale subsistence farming to large commercial agriculture (see Fig. 1 ). The heterogeneity in irrigation practices and systems across different regions adds to th... 详细信息
来源: 评论
Classes Are Not Equal: An Empirical Study on Image recognition Fairness
Classes Are Not Equal: An Empirical Study on Image Recogniti...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cui, Jiequan Zhu, Beier Wen, Xin Qi, Xiaojuan Yu, Bei Zhang, Hanwang Nanyang Technol Univ Singapore Singapore Univ Hong Kong Hong Kong Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
In this paper, we present an empirical study on image unfairness, i.e., extreme class accuracy disparity on balanced data like ImageNet. We demonstrate that are not equal and unfairness is prevalent for image classifi... 详细信息
来源: 评论
Edit One for All: Interactive Batch Image Editing
Edit One for All: Interactive Batch Image Editing
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Thao Nguyen Ojha, Utkarsh Li, Yuheng Liu, Haotian Lee, Yong Jae Univ Wisconsin Madison Madison WI 53707 USA
In recent years, image editing has advanced remarkably. With increased human control, it is now possible to edit an image in a plethora of ways;from specifying in text what we want to change, to straight up dragging t... 详细信息
来源: 评论