咨询与建议

限定检索结果

文献类型

  • 11,886 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 11,891 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,060 篇 工学
    • 7,618 篇 计算机科学与技术...
    • 796 篇 机械工程
    • 688 篇 电气工程
    • 361 篇 软件工程
    • 228 篇 控制科学与工程
    • 41 篇 光学工程
    • 19 篇 生物工程
    • 17 篇 信息与通信工程
    • 12 篇 生物医学工程(可授...
    • 7 篇 交通运输工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 5 篇 仪器科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 安全科学与工程
    • 4 篇 土木工程
  • 3,347 篇 医学
    • 3,346 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 254 篇 理学
    • 198 篇 系统科学
    • 32 篇 物理学
    • 21 篇 生物学
    • 19 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 17 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 5,633 篇 computer vision
  • 2,668 篇 training
  • 2,203 篇 pattern recognit...
  • 1,747 篇 computational mo...
  • 1,502 篇 visualization
  • 1,360 篇 three-dimensiona...
  • 1,074 篇 semantics
  • 999 篇 benchmark testin...
  • 986 篇 codes
  • 959 篇 computer archite...
  • 892 篇 deep learning
  • 777 篇 conferences
  • 754 篇 task analysis
  • 700 篇 feature extracti...
  • 561 篇 transformers
  • 533 篇 face recognition
  • 527 篇 neural networks
  • 495 篇 object detection
  • 490 篇 image segmentati...
  • 468 篇 cameras

机构

  • 174 篇 univ sci & techn...
  • 145 篇 carnegie mellon ...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 134 篇 chinese univ hon...
  • 110 篇 zhejiang univ pe...
  • 109 篇 peng cheng lab p...
  • 99 篇 swiss fed inst t...
  • 91 篇 tsinghua univers...
  • 90 篇 shanghai ai lab ...
  • 87 篇 sensetime res pe...
  • 86 篇 shanghai jiao to...
  • 83 篇 zhejiang univers...
  • 82 篇 tech univ munich...
  • 79 篇 university of sc...
  • 79 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 australian natl ...
  • 76 篇 alibaba grp peop...
  • 75 篇 peng cheng labor...

作者

  • 75 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 37 篇 loy chen change
  • 36 篇 tao dacheng
  • 32 篇 zhou jie
  • 31 篇 chen chen
  • 30 篇 liu yang
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 29 篇 zha zheng-jun
  • 28 篇 li xin
  • 27 篇 qi tian
  • 26 篇 vasconcelos nuno
  • 25 篇 liu xiaoming
  • 25 篇 darrell trevor
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping
  • 24 篇 ying shan

语言

  • 11,849 篇 英文
  • 41 篇 其他
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024"
11891 条 记 录,以下是1261-1270 订阅
排序:
The Dialog Must Go On: Improving Visual Dialog via Generative Self-Training
The Dialog Must Go On: Improving Visual Dialog via Generativ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kang, Gi-Cheon Kim, Sungdong Kim, Jin-Hwa Kwak, Donghyun Zhang, Byoung-Tak Seoul Natl Univ IPAI Seoul South Korea AIIS Seoul South Korea NAVER AI Lab Seongnam South Korea NAVER Cloud CLOVA Seongnam South Korea
Visual dialog (VisDial) is a task of answering a sequence of questions grounded in an image, using the dialog history as context. Prior work has trained the dialog agents solely on VisDial data via supervised learning... 详细信息
来源: 评论
Towards Fast Adaptation of Pretrained Contrastive Models for Multi-channel Video-Language Retrieval
Towards Fast Adaptation of Pretrained Contrastive Models for...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lin, Xudong Tiwari, Simran Huang, Shiyuan Li, Manling Shou, Mike Zheng Ji, Heng Chang, Shih-Fu Columbia Univ New York NY 10027 USA UIUC Champaign IL USA Natl Univ Singapore Singapore Singapore
Multi-channel video-language retrieval require models to understand information from different channels (e.g. video+question, video+speech) to correctly link a video with a textual response or query. Fortunately, cont... 详细信息
来源: 评论
Meta-Explore: Exploratory Hierarchical vision-and-Language Navigation Using Scene Object Spectrum Grounding
Meta-Explore: Exploratory Hierarchical Vision-and-Language N...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hwang, Minyoung Jeong, Jaeyeon Kim, Minsoo Oh, Yoonseon Oh, Songhwai Seoul Natl Univ Elect & Comp Engn Seoul South Korea Seoul Natl Univ ASRI Seoul South Korea Hanyang Univ Dept Elect Engn Seoul South Korea Seoul Natl Univ Interdisciplinary Major Artificial Intelligence Seoul South Korea
The main challenge in vision-and-language navigation (VLN) is how to understand natural-language instructions in an unseen environment. The main limitation of conventional VLN algorithms is that if an action is mistak... 详细信息
来源: 评论
Distilling vision-Language Pre-training to Collaborate with Weakly-Supervised Temporal Action Localization
Distilling Vision-Language Pre-training to Collaborate with ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ju, Chen Zheng, Kunhao Liu, Jinxiang Zhao, Peisen Zhang, Ya Chang, Jianlong Tian, Qi Wang, Yanfeng Shanghai Jiao Tong Univ CMIC Shanghai Peoples R China Shanghai AI Lab Shanghai Peoples R China Huawei Cloud Shenzhen Peoples R China
Weakly-supervised temporal action localization (WTAL) learns to detect and classify action instances with only category labels. Most methods widely adopt the off-the-shelf Classification-Based Pre-training (CBP) to ge... 详细信息
来源: 评论
IFSeg: Image-free Semantic Segmentation via vision-Language Model
IFSeg: Image-free Semantic Segmentation via Vision-Language ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yun, Sukmin Park, Seong Hyeon Seo, Paul Hongsuck Shin, Jinwoo Korea Adv Inst Sci & Technol KAIST Daejeon South Korea Google Res Seoul South Korea Mohamed Bin Zayed Univ Artificial Intelligence MB Abu Dhabi U Arab Emirates
vision-language (VL) pre-training has recently gained much attention for its transferability and flexibility in novel concepts (e.g., cross-modality transfer) across various visual tasks. However, VL-driven segmentati... 详细信息
来源: 评论
Learning to Segment Every Referring Object Point by Point
Learning to Segment Every Referring Object Point by Point
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Qu, Mengxue Wu, Yu Wei, Yunchao Liu, Wu Liang, Xiaodan Zhao, Yao Beijing Jiaotong Univ Inst Informat Sci Beijing Peoples R China Beijing Key Lab Adv Informat Sci & Network Techno Beijing Peoples R China Wuhan Univ Wuhan Peoples R China JD Explore Acad Beijing Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China MBZUAI Abu Dhabi U Arab Emirates
Referring Expression Segmentation (RES) can facilitate pixel-level semantic alignment between vision and language. Most of the existing RES approaches require massive pixel-level annotations, which are expensive and e... 详细信息
来源: 评论
Bit-shrinking: Limiting Instantaneous Sharpness for Improving Post-training Quantization
Bit-shrinking: Limiting Instantaneous Sharpness for Improvin...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lin, Chen Peng, Bo Li, Zheyang Tan, Wenming Ren, Ye Xiao, Jun Pu, Shiliang Hikvis Res Inst Hangzhou Peoples R China Zhe Jiang Univ Hangzhou Peoples R China
Post-training quantization (PTQ) is an effective compression method to reduce the model size and computational cost. However, quantizing a model into a low-bit one, e.g., lower than 4, is difficult and often results i... 详细信息
来源: 评论
Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking
Observation-Centric SORT: Rethinking SORT for Robust Multi-O...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cao, Jinkun Pang, Jiangmiao Weng, Xinshuo Khirodkar, Rawal Kitani, Kris Carnegie Mellon Univ Pittsburgh PA 15213 USA Shanghai AI Lab Shanghai Peoples R China Nvidia Santa Clara CA USA
Kalman filter (KF) based methods for multi-object tracking (MOT) make an assumption that objects move linearly. While this assumption is acceptable for very short periods of occlusion, linear estimates of motion for p... 详细信息
来源: 评论
Diffusion in the Dark: A Diffusion Model for Low-Light Text recognition
Diffusion in the Dark: A Diffusion Model for Low-Light Text ...
收藏 引用
ieee/cvf Winter conference on Applications of computer vision (WACV)
作者: Nguyen, Cindy M. Chan, Eric R. Bergman, Alexander W. Wetzstein, Gordon Stanford Univ Stanford CA 94305 USA
Capturing images is a key part of automation for high-level tasks such as scene text recognition. Low-light conditions pose a challenge for high-level perception stacks, which are often optimized on well-lit, artifact... 详细信息
来源: 评论
Semantic Prompt for Few-Shot Image recognition
Semantic Prompt for Few-Shot Image Recognition
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Wentao Si, Chenyang Zhang, Zhang Wang, Liang Wang, Zilei Tan, Tieniu Univ Sci & Technol China Hefei Peoples R China CASIA NLPR Ctr Res Intelligent Percept & Comp Hangzhou Peoples R China Nanyang Technol Univ Singapore Singapore Univ Chinese Acad Sci Beijing Peoples R China
Few-shot learning is a challenging problem since only a few examples are provided to recognize a new class. Several recent studies exploit additional semantic information, e.g. text embeddings of class names, to addre... 详细信息
来源: 评论