咨询与建议

限定检索结果

文献类型

  • 11,892 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 11,897 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,066 篇 工学
    • 7,624 篇 计算机科学与技术...
    • 796 篇 机械工程
    • 690 篇 电气工程
    • 366 篇 软件工程
    • 233 篇 控制科学与工程
    • 41 篇 光学工程
    • 22 篇 信息与通信工程
    • 19 篇 生物工程
    • 12 篇 生物医学工程(可授...
    • 9 篇 交通运输工程
    • 8 篇 电子科学与技术(可...
    • 7 篇 安全科学与工程
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 化学工程与技术
    • 5 篇 网络空间安全
    • 4 篇 土木工程
  • 3,348 篇 医学
    • 3,347 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
    • 4 篇 特种医学
  • 259 篇 理学
    • 198 篇 系统科学
    • 34 篇 物理学
    • 22 篇 数学
    • 21 篇 生物学
    • 9 篇 化学
    • 9 篇 统计学(可授理学、...
  • 19 篇 管理学
    • 14 篇 管理科学与工程(可...
    • 8 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 3 篇 法学
  • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 5,634 篇 computer vision
  • 2,668 篇 training
  • 2,206 篇 pattern recognit...
  • 1,747 篇 computational mo...
  • 1,502 篇 visualization
  • 1,360 篇 three-dimensiona...
  • 1,074 篇 semantics
  • 999 篇 benchmark testin...
  • 986 篇 codes
  • 959 篇 computer archite...
  • 892 篇 deep learning
  • 777 篇 conferences
  • 754 篇 task analysis
  • 700 篇 feature extracti...
  • 561 篇 transformers
  • 533 篇 face recognition
  • 527 篇 neural networks
  • 495 篇 object detection
  • 490 篇 image segmentati...
  • 468 篇 cameras

机构

  • 174 篇 univ sci & techn...
  • 145 篇 carnegie mellon ...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 134 篇 chinese univ hon...
  • 110 篇 zhejiang univ pe...
  • 109 篇 peng cheng lab p...
  • 99 篇 swiss fed inst t...
  • 91 篇 tsinghua univers...
  • 90 篇 shanghai ai lab ...
  • 87 篇 sensetime res pe...
  • 86 篇 shanghai jiao to...
  • 83 篇 zhejiang univers...
  • 82 篇 tech univ munich...
  • 79 篇 university of sc...
  • 79 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 australian natl ...
  • 76 篇 alibaba grp peop...
  • 75 篇 peng cheng labor...

作者

  • 75 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 37 篇 loy chen change
  • 36 篇 tao dacheng
  • 32 篇 zhou jie
  • 31 篇 chen chen
  • 30 篇 liu yang
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 29 篇 zha zheng-jun
  • 28 篇 li xin
  • 27 篇 qi tian
  • 26 篇 vasconcelos nuno
  • 25 篇 liu xiaoming
  • 25 篇 darrell trevor
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping
  • 24 篇 ying shan

语言

  • 11,804 篇 英文
  • 92 篇 其他
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024"
11897 条 记 录,以下是1681-1690 订阅
排序:
Quantifying Societal Bias Amplification in Image Captioning
Quantifying Societal Bias Amplification in Image Captioning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hirota, Yusuke Nakashima, Yuta Garcia, Noa Osaka Univ Suita Osaka Japan
We study societal bias amplification in image captioning. Image captioning models have been shown to perpetuate gender and racial biases, however, metrics to measure, quantify, and evaluate the societal bias in captio... 详细信息
来源: 评论
A Low-cost & Real-time Motion Capture System
A Low-cost & Real-time Motion Capture System
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chatzitofis, Anargyros Albanis, Georgios Zioulis, Nikolaos Thermos, Spyridon Codewheel Larnaka Larnaca Cyprus Univ Thessaly Dept Informat & Telecommun Volos Greece
Traditional marker-based motion capture requires excessive and specialized equipment, hindering accessibility and wider adoption. In this work, we demonstrate such a system but rely on a very sparse set of low-cost co... 详细信息
来源: 评论
Deep Depth from Focus with Differential Focus Volume
Deep Depth from Focus with Differential Focus Volume
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yang, Fengting Huang, Xiaolei Zhou, Zihan Penn State Univ University Pk PA 16802 USA
Depth-from-focus (DFF) is a technique that infers depth using the focus change of a camera. In this work, we propose a convolutional neural network (CNN) to find the best-focused pixels in a focal stack and infer dept... 详细信息
来源: 评论
Sequential Transformer for End-to-End Video Text Detection
Sequential Transformer for End-to-End Video Text Detection
收藏 引用
ieee/cvf Winter conference on Applications of computer vision (WACV)
作者: Zhang, Jun-Bo Zhao, Meng-Biao Yin, Fei Liu, Cheng-Lin Chinese Acad Sci Inst Automat SKL MAIS Beijing Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing Peoples R China
In existing methods of video text detection, the detection and tracking branches are usually independent of each other, and although they jointly optimize the backbone network, the tracking-by-detection paradigm still... 详细信息
来源: 评论
Self-Supervised Representation Learning with Cross-Context Learning between Global and Hypercolumn Features
Self-Supervised Representation Learning with Cross-Context L...
收藏 引用
ieee/cvf Winter conference on Applications of computer vision (WACV)
作者: Gao, Zheng Feng, Chen Patras, Ioannis Queen Mary Univ London Mile End Rd London E1 4NS England
Whilst contrastive learning yields powerful representations by matching different augmented views of the same instance, it lacks the ability to capture the similarities between different instances. One popular way to ... 详细信息
来源: 评论
Augment the Pairs: Semantics-Preserving Image-Caption Pair Augmentation for Grounding-Based vision and Language Models
Augment the Pairs: Semantics-Preserving Image-Caption Pair A...
收藏 引用
ieee/cvf Winter conference on Applications of computer vision (WACV)
作者: Yi, Jingru Uzkent, Burak Ignat, Oana Li, Zili Garg, Amanmeet Yu, Xiang Liu, Linda Amazon Prime Video Seattle WA 98109 USA
Grounding-based vision and language models have been successfully applied to low-level vision tasks, aiming to precisely locate objects referred in captions. The effectiveness of grounding representation learning heav... 详细信息
来源: 评论
Guided Distillation for Semi-Supervised Instance Segmentation
Guided Distillation for Semi-Supervised Instance Segmentatio...
收藏 引用
ieee/cvf Winter conference on Applications of computer vision (WACV)
作者: Berrada, Tariq Couprie, Camille Alahari, Karteek Verbeek, Jakob Meta FAIR Menlo Pk CA 94025 USA Univ Grenoble Alpes CNRS Inria Grenoble INPLJK Grenoble France
Although instance segmentation methods have improved considerably, the dominant paradigm is to rely on fully-annotated training images, which are tedious to obtain. To alleviate this reliance, and boost results, semi-... 详细信息
来源: 评论
M33D: Learning 3D priors using Multi-Modal Masked Autoencoders for 2D image and video understanding
M<SUP>3</SUP>3D: Learning 3D priors using Multi-Modal Masked...
收藏 引用
ieee/cvf Winter conference on Applications of computer vision (WACV)
作者: Jamal, Muhammad Abdullah Mohareri, Omid Intuit Surg Inc Sunnyvale CA 94086 USA
We present a new pre-training strategy called M(3)3D (Multi-Modal Masked 3D) built based on Multi-modal masked autoencoders that can leverage 3D priors and learned cross-modal representations in RGB-D data. We integra... 详细信息
来源: 评论
On the Importance of Large Objects in CNN Based Object Detection Algorithms
On the Importance of Large Objects in CNN Based Object Detec...
收藏 引用
ieee/cvf Winter conference on Applications of computer vision (WACV)
作者: Ben Saad, Ahmed Facciolo, Gabriele Davy, Axel Univ Paris Saclay CNRS ENS ParisSaclay Ctr Borelli F-91190 Gif Sur Yvette France Schlumberger AI Lab Houston TX 77056 USA
Object detection models, a prominent class of machine learning algorithms, aim to identify and precisely locate objects in images or videos. However, this task might yield uneven performances sometimes caused by the o... 详细信息
来源: 评论
Handformer2T: A Lightweight Regression-based Model for Interacting Hands Pose Estimation from A Single RGB Image
Handformer2T: A Lightweight Regression-based Model for Inter...
收藏 引用
ieee/cvf Winter conference on Applications of computer vision (WACV)
作者: Zhang, Pengfei Kong, Deying Univ Calif Irvine Irvine CA 92617 USA Google Mountain View CA USA
Despite its extensive range of potential applications in virtual reality and augmented reality, 3D interacting hand pose estimation from RGB image remains a very challenging problem, due to appearance confusions betwe... 详细信息
来源: 评论