咨询与建议

限定检索结果

文献类型

  • 11,885 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 11,890 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,059 篇 工学
    • 7,617 篇 计算机科学与技术...
    • 796 篇 机械工程
    • 688 篇 电气工程
    • 360 篇 软件工程
    • 228 篇 控制科学与工程
    • 40 篇 光学工程
    • 19 篇 生物工程
    • 17 篇 信息与通信工程
    • 12 篇 生物医学工程(可授...
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 交通运输工程
    • 5 篇 仪器科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 安全科学与工程
    • 4 篇 土木工程
  • 3,347 篇 医学
    • 3,346 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 253 篇 理学
    • 198 篇 系统科学
    • 32 篇 物理学
    • 21 篇 生物学
    • 18 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 17 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 5,633 篇 computer vision
  • 2,668 篇 training
  • 2,203 篇 pattern recognit...
  • 1,747 篇 computational mo...
  • 1,502 篇 visualization
  • 1,360 篇 three-dimensiona...
  • 1,074 篇 semantics
  • 999 篇 benchmark testin...
  • 986 篇 codes
  • 959 篇 computer archite...
  • 891 篇 deep learning
  • 777 篇 conferences
  • 754 篇 task analysis
  • 700 篇 feature extracti...
  • 561 篇 transformers
  • 533 篇 face recognition
  • 527 篇 neural networks
  • 495 篇 object detection
  • 490 篇 image segmentati...
  • 468 篇 cameras

机构

  • 174 篇 univ sci & techn...
  • 145 篇 carnegie mellon ...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 134 篇 chinese univ hon...
  • 110 篇 zhejiang univ pe...
  • 109 篇 peng cheng lab p...
  • 99 篇 swiss fed inst t...
  • 91 篇 tsinghua univers...
  • 90 篇 shanghai ai lab ...
  • 87 篇 sensetime res pe...
  • 86 篇 shanghai jiao to...
  • 83 篇 zhejiang univers...
  • 82 篇 tech univ munich...
  • 79 篇 university of sc...
  • 79 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 australian natl ...
  • 76 篇 alibaba grp peop...
  • 75 篇 peng cheng labor...

作者

  • 75 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 37 篇 loy chen change
  • 36 篇 tao dacheng
  • 32 篇 zhou jie
  • 31 篇 chen chen
  • 30 篇 liu yang
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 29 篇 zha zheng-jun
  • 28 篇 li xin
  • 27 篇 qi tian
  • 26 篇 vasconcelos nuno
  • 25 篇 liu xiaoming
  • 25 篇 darrell trevor
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping
  • 24 篇 ying shan

语言

  • 11,863 篇 英文
  • 26 篇 其他
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024"
11890 条 记 录,以下是251-260 订阅
排序:
Synthesize, Diagnose, and Optimize: Towards Fine-Grained vision-Language Understanding
Synthesize, Diagnose, and Optimize: Towards Fine-Grained Vis...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Peng, Wujian Xi, Sicheng You, Zuyao Lan, Shiyi Wu, Zuxuan Fudan Univ Sch CS Shanghai Key Lab Intell Info Proc Shanghai Peoples R China Shanghai Collaborat Innovat Ctr Intelligent Visua Shanghai Peoples R China NVIDIA Shenzhen Guangdong Peoples R China
vision language models (VLM) have demonstrated remarkable performance across various downstream tasks. However, understanding fine-grained visual-linguistic concepts, such as attributes and inter-object relationships,... 详细信息
来源: 评论
ParamISP: Learned Forward and Inverse ISPs using Camera Parameters
ParamISP: Learned Forward and Inverse ISPs using Camera Para...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kim, Woohyeok Kim, Geonu Lee, Junyong Lee, Seungyong Baek, Seung-Hwan Cho, Sunghyun POSTECH Pohang South Korea Samsung AI Ctr Toronto Toronto ON Canada Samsung Toronto ON Canada
RAW images are rarely shared mainly due to its excessive data size compared to their sRGB counterparts obtained by camera ISPs. Learning the forward and inverse processes of camera ISPs has been recently demonstrated,... 详细信息
来源: 评论
Multi-Modal Hallucination Control by Visual Information Grounding
Multi-Modal Hallucination Control by Visual Information Grou...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Favero, Alessandro Zancato, Luca Trager, Matthew Choudhary, Siddharth Perera, Pramuditha Achille, Alessandro Swaminathan, Ashwin Soatto, Stefano AWS AI Labs Lausanne Switzerland
Generative vision-Language Models (VLMs) are prone to generate plausible-sounding textual answers that, however, are not always grounded in the input image. We investigate this phenomenon, usually referred to as "... 详细信息
来源: 评论
Choose What You Need: Disentangled Representation Learning for Scene Text recognition, Removal and Editing
Choose What You Need: Disentangled Representation Learning f...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Boqiang Xie, Hongtao Gao, Zuan Wang, Yuxin Univ Sci & Technol China Hefei Peoples R China
Scene text images contain not only style information (font, background) but also content information (character, texture). Different scene text tasks need different information, but previous representation learning me... 详细信息
来源: 评论
SpatialVLM: Endowing vision-Language Models with Spatial Reasoning Capabilities
SpatialVLM: Endowing Vision-Language Models with Spatial Rea...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Boyuan Xu, Zhuo Kirman, Sean Ichter, Brian Sadigh, Dorsa Guibas, Leonidas Xia, Fei Google DeepMind London England Google Res Mountain View CA USA MIT 77 Massachusetts Ave Cambridge MA 02139 USA
Understanding and reasoning about spatial relationships is a fundamental capability for Visual Question Answering (VQA) and robotics. While vision Language Models (VLM) have demonstrated remarkable performance in cert... 详细信息
来源: 评论
Low-Resource vision Challenges for Foundation Models
Low-Resource Vision Challenges for Foundation Models
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Yunhua Doughty, Hazel Snoek, Cees G. M. Univ Amsterdam Amsterdam Netherlands Leiden Univ Leiden Netherlands
Low-resource settings are well-established in natural language processing, where many languages lack sufficient data for deep learning at scale. However, low-resource problems are under-explored in computer vision. In...
来源: 评论
ViP-LLaVA: Making Large Multimodal Models Understand Arbitrary Visual Prompts
ViP-LLaVA: Making Large Multimodal Models Understand Arbitra...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cai, Mu Liu, Haotian Mustikovela, Siva Karthik Meyer, Gregory P. Chai, Yuning Park, Dennis Lee, Yong Jae Univ Wisconsin Madison WI 53706 USA Cruise LLC San Francisco CA USA
While existing large vision-language multimodal models focus on whole image understanding, there is a prominent gap in achieving region-specific comprehension. Current approaches that use textual coordinates or spatia... 详细信息
来源: 评论
Troika: Multi-Path Cross-Modal Traction for Compositional Zero-Shot Learning
Troika: Multi-Path Cross-Modal Traction for Compositional Ze...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hu, Siteng Gong, Biao Feng, Yutong Zhang, Min Lv, Yiliang Wang, Donglin Zhejiang Univ Hangzhou Peoples R China Alibaba Grp Hangzhou Peoples R China Westlake Univ Sch Engn AI Div Machine Intelligence Lab MiLAB Hangzhou Peoples R China
Recent compositional zero-shot learning (CZSL) methods adapt pre-trained vision-language models (VLMs) by constructing trainable prompts only for composed state-object pairs. Relying on learning the joint representati... 详细信息
来源: 评论
Generating Enhanced Negatives for Training Language-Based Object Detectors
Generating Enhanced Negatives for Training Language-Based Ob...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Shiyu Zhao, Long Kumar, Vijay B. G. Suh, Yumin Metaxas, Dimitris N. Chandraker, Manmohan Schulter, Samuel Rutgers State Univ New Brunswick NJ 08901 USA NEC Labs Amer Princeton NJ USA Google Res Mountain View CA USA Univ Calif San Diego La Jolla CA USA
The recent progress in language-based open-vocabulary object detection can be largely attributed to finding better ways of leveraging large-scale data with free-form text annotations. Training such models with a discr... 详细信息
来源: 评论
Boosting Adversarial Transferability by Block Shuffle and Rotation
Boosting Adversarial Transferability by Block Shuffle and Ro...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Kunyu He, Xuanran Wang, Wenxuan Wang, Xiaosen Chinese Univ Hong Kong Hong Kong Peoples R China Nanyang Technol Univ Singapore Singapore Huawei Singular Secur Lab Beijing Peoples R China
Adversarial examples mislead deep neural networks with imperceptible perturbations and have brought significant threats to deep learning. An important aspect is their transferability, which refers to their ability to ... 详细信息
来源: 评论