咨询与建议

限定检索结果

文献类型

  • 11,885 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 11,890 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,059 篇 工学
    • 7,617 篇 计算机科学与技术...
    • 796 篇 机械工程
    • 688 篇 电气工程
    • 360 篇 软件工程
    • 228 篇 控制科学与工程
    • 40 篇 光学工程
    • 19 篇 生物工程
    • 17 篇 信息与通信工程
    • 12 篇 生物医学工程(可授...
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 交通运输工程
    • 5 篇 仪器科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 安全科学与工程
    • 4 篇 土木工程
  • 3,347 篇 医学
    • 3,346 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 253 篇 理学
    • 198 篇 系统科学
    • 32 篇 物理学
    • 21 篇 生物学
    • 18 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 17 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 5,633 篇 computer vision
  • 2,668 篇 training
  • 2,203 篇 pattern recognit...
  • 1,747 篇 computational mo...
  • 1,502 篇 visualization
  • 1,360 篇 three-dimensiona...
  • 1,074 篇 semantics
  • 999 篇 benchmark testin...
  • 986 篇 codes
  • 959 篇 computer archite...
  • 891 篇 deep learning
  • 777 篇 conferences
  • 754 篇 task analysis
  • 700 篇 feature extracti...
  • 561 篇 transformers
  • 533 篇 face recognition
  • 527 篇 neural networks
  • 495 篇 object detection
  • 490 篇 image segmentati...
  • 468 篇 cameras

机构

  • 174 篇 univ sci & techn...
  • 145 篇 carnegie mellon ...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 134 篇 chinese univ hon...
  • 110 篇 zhejiang univ pe...
  • 109 篇 peng cheng lab p...
  • 99 篇 swiss fed inst t...
  • 91 篇 tsinghua univers...
  • 90 篇 shanghai ai lab ...
  • 87 篇 sensetime res pe...
  • 86 篇 shanghai jiao to...
  • 83 篇 zhejiang univers...
  • 82 篇 tech univ munich...
  • 79 篇 university of sc...
  • 79 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 australian natl ...
  • 76 篇 alibaba grp peop...
  • 75 篇 peng cheng labor...

作者

  • 75 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 37 篇 loy chen change
  • 36 篇 tao dacheng
  • 32 篇 zhou jie
  • 31 篇 chen chen
  • 30 篇 liu yang
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 29 篇 zha zheng-jun
  • 28 篇 li xin
  • 27 篇 qi tian
  • 26 篇 vasconcelos nuno
  • 25 篇 liu xiaoming
  • 25 篇 darrell trevor
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping
  • 24 篇 ying shan

语言

  • 11,863 篇 英文
  • 26 篇 其他
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024"
11890 条 记 录,以下是351-360 订阅
排序:
Instance-aware Exploration-Verification-Exploitation for Instance ImageGoal Navigation
Instance-aware Exploration-Verification-Exploitation for Ins...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lei, Xiaohan Wang, Min Zhou, Wengang Li, Li Li, Houqiang Univ Sci & Technol China MoE Key Lab Brain Inspired Intelligent Percept & Hefei Anhui Peoples R China Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei Anhui Peoples R China
As a new embodied vision task, Instance ImageGoal Navigation (IIN) aims to navigate to a specified object depicted by a goal image in an unexplored environment. The main challenge of this task lies in identifying the ... 详细信息
来源: 评论
PIGEON: Predicting Image Geolocations
PIGEON: Predicting Image Geolocations
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Haas, Lukas Skreta, Michal Alberti, Silas Finn, Chelsea Stanford Univ Stanford CA 94305 USA
Planet-scale image geolocalization remains a challenging problem due to the diversity of images originating from anywhere in the world. Although approaches based on vision transformers have made significant progress i... 详细信息
来源: 评论
RMT: Retentive Networks Meet vision Transformers
RMT: Retentive Networks Meet Vision Transformers
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Fan, Qihang Huang, Huaibo Chen, Mingrui Liu, Hongmin He, Ran Chinese Acad Sci Inst Automat MAIS & CRIPAC Beijing Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing Peoples R China Univ Sci & Technol Beijing Beijing Peoples R China
vision Transformer (ViT) has gained increasing attention in the computer vision community in recent years. However, the core component of ViT, Self-Attention, lacks explicit spatial priors and bears a quadratic comput... 详细信息
来源: 评论
Leveraging Cross-Modal Neighbor Representation for Improved CLIP Classification
Leveraging Cross-Modal Neighbor Representation for Improved ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yi, Chao Ren, Lu Zhan, De-Chuan Ye, Han-Jia Nanjing Univ Natl Key Lab Novel Software Technol Nanjing Peoples R China Nanjing Univ Sch Artificial Intelligence Nanjing Peoples R China
CLIP showcases exceptional cross-modal matching capabilities due to its training on image-text contrastive learning tasks. However, without specific optimization for unimodal scenarios, its performance in single-modal... 详细信息
来源: 评论
AffordanceLLM: Grounding Affordance from vision Language Models
AffordanceLLM: Grounding Affordance from Vision Language Mod...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Qian, Shengyi Chen, Weifeng Bai, Mm Zhou, Xiong Tu, Zhuowen Li, Li Erran Amazon AWS AI Seattle WA 98109 USA
Affordance grounding refers to the task of finding the area of an object with which one can interact. It is a fundamental but challenging task, as a successful solution requires the comprehensive understanding of a sc... 详细信息
来源: 评论
Visual Program Distillation: Distilling Tools and Programmatic Reasoning into vision-Language Models
Visual Program Distillation: Distilling Tools and Programmat...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hu, Yushi Stretcu, Otilia Lu, Chun-Ta Viswanathan, Krishnamurthy Hata, Kenji Luo, Enming Krishna, Ranjay Fuxman, Ariel Google Res Mountain View CA 94043 USA Univ Washington Seattle WA 98195 USA
Solving complex visual tasks such as "Who invented the musical instrument on the right?" involves a composition of skills: understanding space, recognizing instruments, and also retrieving prior knowledge. R... 详细信息
来源: 评论
From Coarse to Fine-Grained Open-Set recognition
From Coarse to Fine-Grained Open-Set Recognition
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lang, Nico Snaebjarnarson, Vesteinn Cole, Elijah Mac Aodha, Oisin Igel, Christian Belongie, Serge Univ Copenhagen Copenhagen Denmark Altos Labs San Diego CA USA Univ Edinburgh Edinburgh Midlothian Scotland
Open-set recognition (OSR) methods aim to identify whether or not a test example belongs to a category observed during training. Depending on how visually similar a test example is to the training categories, the OSR ... 详细信息
来源: 评论
Scene Adaptive Sparse Transformer for Event-based Object Detection
Scene Adaptive Sparse Transformer for Event-based Object Det...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Peng, Yansong Li, Hebei Zhang, Yueyi Sun, Xiaoyan Wu, Feng Univ Sci & Technol China Hefei Peoples R China Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei Peoples R China
While recent Transformer-based approaches have shown impressive performances on event-based object detection tasks, their high computational costs still diminish the low power consumption advantage of event cameras. I... 详细信息
来源: 评论
JRDB-PanoTrack: An Open-world Panoptic Segmentation and Tracking Robotic Dataset in Crowded Human Environments
JRDB-PanoTrack: An Open-world Panoptic Segmentation and Trac...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lel, Duy Tho Gou, Chenhui Datta, Stavya Shi, Hengcan Reid, Ian Cai, Jianfei Rezatofighi, Hamid Monash Univ Melbourne Vic Australia MBZUAI Abu Dhabi U Arab Emirates Univ Adelaide Adelaide SA Australia
Autonomous robot systems have attracted increasing research attention in recent years, where environment understanding is a crucial step for robot navigation, human-robot interaction, and decision. Real-world robot sy... 详细信息
来源: 评论
A Sliced Wasserstein Loss for Neural Texture Synthesis
A Sliced Wasserstein Loss for Neural Texture Synthesis
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Heitz, Eric Vanhoey, Kenneth Chambon, Thomas Belcour, Laurent Unity Technol Grenoble France
We address the problem of computing a textural loss based on the statistics extracted from the feature activations of a convolutional neural network optimized for object recognition (e.g. VGG-19). The underlying mathe... 详细信息
来源: 评论