咨询与建议

限定检索结果

文献类型

  • 11,885 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 11,890 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,059 篇 工学
    • 7,617 篇 计算机科学与技术...
    • 796 篇 机械工程
    • 688 篇 电气工程
    • 360 篇 软件工程
    • 228 篇 控制科学与工程
    • 40 篇 光学工程
    • 19 篇 生物工程
    • 17 篇 信息与通信工程
    • 12 篇 生物医学工程(可授...
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 交通运输工程
    • 5 篇 仪器科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 安全科学与工程
    • 4 篇 土木工程
  • 3,347 篇 医学
    • 3,346 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 253 篇 理学
    • 198 篇 系统科学
    • 32 篇 物理学
    • 21 篇 生物学
    • 18 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 17 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 5,633 篇 computer vision
  • 2,668 篇 training
  • 2,203 篇 pattern recognit...
  • 1,747 篇 computational mo...
  • 1,502 篇 visualization
  • 1,360 篇 three-dimensiona...
  • 1,074 篇 semantics
  • 999 篇 benchmark testin...
  • 986 篇 codes
  • 959 篇 computer archite...
  • 891 篇 deep learning
  • 777 篇 conferences
  • 754 篇 task analysis
  • 700 篇 feature extracti...
  • 561 篇 transformers
  • 533 篇 face recognition
  • 527 篇 neural networks
  • 495 篇 object detection
  • 490 篇 image segmentati...
  • 468 篇 cameras

机构

  • 174 篇 univ sci & techn...
  • 145 篇 carnegie mellon ...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 134 篇 chinese univ hon...
  • 110 篇 zhejiang univ pe...
  • 109 篇 peng cheng lab p...
  • 99 篇 swiss fed inst t...
  • 91 篇 tsinghua univers...
  • 90 篇 shanghai ai lab ...
  • 87 篇 sensetime res pe...
  • 86 篇 shanghai jiao to...
  • 83 篇 zhejiang univers...
  • 82 篇 tech univ munich...
  • 79 篇 university of sc...
  • 79 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 australian natl ...
  • 76 篇 alibaba grp peop...
  • 75 篇 peng cheng labor...

作者

  • 75 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 37 篇 loy chen change
  • 36 篇 tao dacheng
  • 32 篇 zhou jie
  • 31 篇 chen chen
  • 30 篇 liu yang
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 29 篇 zha zheng-jun
  • 28 篇 li xin
  • 27 篇 qi tian
  • 26 篇 vasconcelos nuno
  • 25 篇 liu xiaoming
  • 25 篇 darrell trevor
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping
  • 24 篇 ying shan

语言

  • 11,863 篇 英文
  • 26 篇 其他
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024"
11890 条 记 录,以下是361-370 订阅
排序:
Gated Fields: Learning Scene Reconstruction from Gated Videos
Gated Fields: Learning Scene Reconstruction from Gated Video...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ramazzina, Andrea Walz, Stefanie Dahal, Pragyan Bijelic, Mario Heide, Felix Mercedes Benz Stuttgart Germany Saarland Univ Saarbrucken Germany Politecn Milan Milan Italy Torc Robot Blacksburg VA USA Princeton Univ Princeton NJ 08544 USA
Reconstructing outdoor 3D scenes from temporal observations is a challenge that recent work on neural fields has offered a new avenue for. However, existing methods that recover scene properties, such as geometry, app... 详细信息
来源: 评论
PracticalDG: Perturbation Distillation on vision-Language Models for Hybrid Domain Generalization
PracticalDG: Perturbation Distillation on Vision-Language Mo...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Zining Wang, Weiqiu Zhao, Zhicheng Su, Fei Men, Aidong Meng, Hongying Beijing Univ Posts & Telecommun Sch Artificial Intelligence Beijing Peoples R China Beijing Key Lab Network Syst & Network Culture Beijing Peoples R China Minist Culture & Tourism Key Lab Interact Technol & Experience Syst Beijing Peoples R China Brunel Univ Uxbridge Uxbridge Middx England
Domain Generalization (DG) aims to resolve distribution shifts between source and target domains, and current DG methods are default to the setting that data from source and target domains share identical categories. ... 详细信息
来源: 评论
GLID: Pre-training a Generalist Encoder-Decoder vision Model
GLID: Pre-training a Generalist Encoder-Decoder Vision Model
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liu, Jihao Zheng, Jinliang Liu, Yu Li, Hongsheng CUHK MMLab Hong Kong Peoples R China SenseTime Res Hong Kong Peoples R China Shanghai AI Lab Shanghai Peoples R China CPII InnoHK Hong Kong Peoples R China Tsinghua Univ Inst AI Ind Res AIR Shanghai Peoples R China
This paper proposes a GeneraLIst encoder-Decoder (GLID) pre-training method for better handling various downstream computer vision tasks. While self-supervised pre-training approaches, e.g., Masked Autoencoder, have s... 详细信息
来源: 评论
Discovering and Mitigating Visual Biases through Keyword Explanation
Discovering and Mitigating Visual Biases through Keyword Exp...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kim, Younghyun Mo, Sangwoo Kim, Minkyu Lee, Kyungmin Lee, Jaeho Shin, Jinwoo Korea Adv Inst Sci & Technol Daejeon South Korea Univ Michigan Ann Arbor MI 48109 USA KRAFTON Seongnam South Korea POSTECH Pohang South Korea
Addressing biases in computer vision models is crucial for real-world AI deployments. However, mitigating visual biases is challenging due to their unexplainable nature, often identified indirectly through visualizati... 详细信息
来源: 评论
Multi-View Action recognition for Distracted Driver Behavior Localization
Multi-View Action Recognition for Distracted Driver Behavior...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xu, Yuehuan Jiang, Shuai Cui, Zhe Su, Fei Beijing Univ Posts & Telecommun Beijing Peoples R China Beijing Key Lab Network Syst & Network Culture Beijing Peoples R China
The detection and recognition of distracted driving behaviors has emerged as a new vision task with the rapid development of computer vision, which is considered as a challenging temporal action localization (TAL) pro... 详细信息
来源: 评论
Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs
Eyes Wide Shut? Exploring the Visual Shortcomings of Multimo...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Tong, Shengbang Liu, Zhuang Zhai, Yuexiang Ma, Yi Lecun, Yann Xie, Saining NYU New York NY 10003 USA Meta FAIR Menlo Pk CA 94025 USA Univ Calif Berkeley Berkeley CA USA
Is vision good enough for language? Recent advancements in multimodal models primarily stem from the powerful reasoning abilities of large language models (LLMs). However, the visual component typically depends only o... 详细信息
来源: 评论
ST2ST: Self-Supervised Test-time Adaptation for Video Action recognition
ST2ST: Self-Supervised Test-time Adaptation for Video Action...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Fahim, Masud An-Nur Islam Innat, Mohammed Boutellier, Jani Univ Vaasa Vaasa Finland Khulna Univ Engn & Technol KUET Khulna Bangladesh
The performance of trained deep neural network (DNN) models relies on the assumption that the test data has largely the same feature distribution as the training data. In deployed video recognition systems, the featur... 详细信息
来源: 评论
EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment Anything
EfficientSAM: Leveraged Masked Image Pretraining for Efficie...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xiong, Yunyang Varadarajan, Bala Wu, Lemeng Xiang, Xiaoyu Xiao, Fanyi Zhu, Chenchen Dai, Xiaoliang Wang, Dilin Sun, Fei Iandola, Forrest Krishnamoorthi, Raghuraman Chandra, Vikas Meta AI Res Menlo Pk CA 94025 USA
Segment Anything Model (SAM) has emerged as a powerful tool for numerous vision applications. A key component that drives the impressive performance for zero-shot transfer and high versatility is a super large Transfo... 详细信息
来源: 评论
Learning from One Continuous Video Stream
Learning from One Continuous Video Stream
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Carreira, Joao King, Michael Patraucean, Viorica Gokal, Dilara Ionescu, Cristian Yang, Yi Zoran, Daniel Heyward, Joseph Doersch, Carl Aytar, Yusuf Damen, Di Liu Zisserman, Andrew Google DeepMind London 1 England Univ Bristol Bristol Avon England Univ Oxford Oxford England
We introduce a framework for online learning from a single continuous video stream - the way people and animals learn, without mini-batches, data augmentation or shuffling. This poses great challenges given the high c... 详细信息
来源: 评论
Alpha-CLIP: A CLIP Model Focusing on Wherever You Want
Alpha-CLIP: A CLIP Model Focusing on Wherever You Want
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Sun, Zeyi Fang, Ye Wu, Tong Zhang, Pan Zang, Yuhang Kong, Shu Xiong, Yuanjun Lin, Dahua Wang, Jiaqi Shanghai Jiao Tong Univ Shanghai Peoples R China Fudan Univ Shanghai Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Shanghai AI Lab Shanghai Peoples R China Univ Macau Taipa Macao Peoples R China MThreads Inc Beijing Peoples R China
Contrastive Language-Image Pre-training (CLIP) plays an essential role in extracting valuable content information from images across diverse tasks. It aligns textual and visual modalities to comprehend the entire imag... 详细信息
来源: 评论