咨询与建议

限定检索结果

文献类型

  • 11,885 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 11,890 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,059 篇 工学
    • 7,617 篇 计算机科学与技术...
    • 796 篇 机械工程
    • 688 篇 电气工程
    • 360 篇 软件工程
    • 228 篇 控制科学与工程
    • 40 篇 光学工程
    • 19 篇 生物工程
    • 17 篇 信息与通信工程
    • 12 篇 生物医学工程(可授...
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 交通运输工程
    • 5 篇 仪器科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 安全科学与工程
    • 4 篇 土木工程
  • 3,347 篇 医学
    • 3,346 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 253 篇 理学
    • 198 篇 系统科学
    • 32 篇 物理学
    • 21 篇 生物学
    • 18 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 17 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 5,633 篇 computer vision
  • 2,668 篇 training
  • 2,203 篇 pattern recognit...
  • 1,747 篇 computational mo...
  • 1,502 篇 visualization
  • 1,360 篇 three-dimensiona...
  • 1,074 篇 semantics
  • 999 篇 benchmark testin...
  • 986 篇 codes
  • 959 篇 computer archite...
  • 891 篇 deep learning
  • 777 篇 conferences
  • 754 篇 task analysis
  • 700 篇 feature extracti...
  • 561 篇 transformers
  • 533 篇 face recognition
  • 527 篇 neural networks
  • 495 篇 object detection
  • 490 篇 image segmentati...
  • 468 篇 cameras

机构

  • 174 篇 univ sci & techn...
  • 145 篇 carnegie mellon ...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 134 篇 chinese univ hon...
  • 110 篇 zhejiang univ pe...
  • 109 篇 peng cheng lab p...
  • 99 篇 swiss fed inst t...
  • 91 篇 tsinghua univers...
  • 90 篇 shanghai ai lab ...
  • 87 篇 sensetime res pe...
  • 86 篇 shanghai jiao to...
  • 83 篇 zhejiang univers...
  • 82 篇 tech univ munich...
  • 79 篇 university of sc...
  • 79 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 australian natl ...
  • 76 篇 alibaba grp peop...
  • 75 篇 peng cheng labor...

作者

  • 75 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 37 篇 loy chen change
  • 36 篇 tao dacheng
  • 32 篇 zhou jie
  • 31 篇 chen chen
  • 30 篇 liu yang
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 29 篇 zha zheng-jun
  • 28 篇 li xin
  • 27 篇 qi tian
  • 26 篇 vasconcelos nuno
  • 25 篇 liu xiaoming
  • 25 篇 darrell trevor
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping
  • 24 篇 ying shan

语言

  • 11,863 篇 英文
  • 26 篇 其他
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024"
11890 条 记 录,以下是411-420 订阅
排序:
The STVchrono Dataset: Towards Continuous Change recognition in Time
The STVchrono Dataset: Towards Continuous Change Recognition...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Sun, Yanjun Qiu, Yue Khan, Mariia Matsuzawa, Fumiya Iwata, Kenji Natl Inst Adv Ind Sci & Technol Tokyo Japan Keio Univ Tokyo Japan Edith Cowan Univ Joondalup Australia
Recognizing continuous changes offers valuable insights into past historical events, supports current trend analysis, and facilitates future planning. This knowledge is crucial for a variety of fields, such as meteoro... 详细信息
来源: 评论
Point Cloud Instance Segmentation using Probabilistic Embeddings
Point Cloud Instance Segmentation using Probabilistic Embedd...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Biao Wonka, Peter KAUST Thuwal Saudi Arabia
In this paper we propose a new framework for point cloud instance segmentation. Our framework has two steps: an embedding step and a clustering step. In the embedding step, our main contribution is to propose a probab... 详细信息
来源: 评论
Deep Video Codec Control for vision Models
Deep Video Codec Control for Vision Models
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Reich, Christoph Debnath, Biplob Patel, Deep Prangemeier, Tim Cremers, Daniel Chakradhar, Srimat NEC Labs Amer Inc San Jose CA 95110 USA Tech Univ Munich Munich Germany Tech Univ Darmstadt Darmstadt Germany Munich Ctr Machine Learning MCML Munich Germany
Standardized lossy video coding is at the core of almost all real-world video processing pipelines. Rate control is used to enable standard codecs to adapt to different network bandwidth conditions or storage constrai... 详细信息
来源: 评论
ViP-LLaVA: Making Large Multimodal Models Understand Arbitrary Visual Prompts
ViP-LLaVA: Making Large Multimodal Models Understand Arbitra...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cai, Mu Liu, Haotian Mustikovela, Siva Karthik Meyer, Gregory P. Chai, Yuning Park, Dennis Lee, Yong Jae Univ Wisconsin Madison WI 53706 USA Cruise LLC San Francisco CA USA
While existing large vision-language multimodal models focus on whole image understanding, there is a prominent gap in achieving region-specific comprehension. Current approaches that use textual coordinates or spatia... 详细信息
来源: 评论
Low-Rank Rescaled vision Transformer Fine-Tuning: A Residual Design Approach
Low-Rank Rescaled Vision Transformer Fine-Tuning: A Residual...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Dong, Wei Zhang, Xing Chen, Bihui Yang, Dawei Lin, Zhijun Yang, Qingsen Wang, Peng Yang, Yang Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu Sichuan Peoples R China Xian Univ Architecture & Technol Coll Informat & Control Engn Xian Shaanxi Peoples R China Northwestern Polytech Univ Sch Comp Sci Xian Shaanxi Peoples R China
Parameter-efficient fine-tuning for pre-trained vision Transformers aims to adeptly tailor a model to downstream tasks by learning a minimal set of new adaptation parameters while preserving the frozen majority of pre... 详细信息
来源: 评论
Good at captioning, bad at counting: Benchmarking GPT-4V on Earth observation data
Good at captioning, bad at counting: Benchmarking GPT-4V on ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Chenhui Wang, Sherrie MIT Inst Data Syst & Soc 77 Massachusetts Ave Cambridge MA 02139 USA
Large vision-Language Models (VLMs) have demonstrated impressive performance on complex tasks involving visual input with natural language instructions. However, it remains unclear to what extent capabilities on natur... 详细信息
来源: 评论
An End-to-End vision Transformer Approach for Image Copy Detection
An End-to-End Vision Transformer Approach for Image Copy Det...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lee, Jiahe Steven Hsu, Wynne Lee, Mong Li Natl Univ Singapore Inst Data Sci Singapore Singapore Natl Univ Singapore Ctr Trusted Internet & Community Singapore Singapore
Image copy detection is one of the pivotal tools to safeguard online information integrity. The challenge lies in determining whether a query image is an edited copy, which necessitates the identification of candidate... 详细信息
来源: 评论
Benchmarking Zero-Shot recognition with vision-Language Models: Challenges on Granularity and Specificity
Benchmarking Zero-Shot Recognition with Vision-Language Mode...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xu, Zhenlin Zhu, Yi Deng, Siqi Mittal, Abhay Chen, Yanbei Wang, Manchen Favaro, Paolo Tighe, Joseph Modolo, Davide AWS AI Labs Seattle WA 98109 USA Boson AI Santa Clara CA 95054 USA Meta Menlo Pk CA USA
This paper presents novel benchmarks for evaluating vision-language models (VLMs) in zero-shot recognition, focusing on granularity and specificity. Although VLMs excel in tasks like image captioning, they face challe... 详细信息
来源: 评论
Variational Autoencoders Pursue PCA Directions (by Accident)  32
Variational Autoencoders Pursue PCA Directions (by Accident)
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Rolinek, Michal Zietlow, Dominik Martius, Georg Max Planck Inst Intelligent Syst Tubingen Germany
The Variational Autoencoder (VAE) is a powerful architecture capable of representation learning and generative modeling. When it comes to learning interpretable (disentangled) representations, VAE and its variants sho... 详细信息
来源: 评论
Modality-Collaborative Test-Time Adaptation for Action recognition
Modality-Collaborative Test-Time Adaptation for Action Recog...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xiong, Baochen Yang, Xiaoshan Song, Yaguang Wang, Yaowei Xu, Changsheng Chinese Acad Sci CASIA Inst Automat State Key Lab Multimodal Artificial Intelligence Beijing Peoples R China Peng Cheng Lab Shenzhen Peoples R China Univ Chinese Acad Sci UCAS Sch Artificial Intelligence Beijing Peoples R China
Video-based Unsupervised Domain Adaptation (VUDA) method improves the generalization of the video model, enabling it to be applied to action recognition tasks in different environments. However, these methods require ... 详细信息
来源: 评论