咨询与建议

限定检索结果

文献类型

  • 11,884 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 11,889 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,055 篇 工学
    • 7,613 篇 计算机科学与技术...
    • 796 篇 机械工程
    • 688 篇 电气工程
    • 356 篇 软件工程
    • 225 篇 控制科学与工程
    • 40 篇 光学工程
    • 19 篇 生物工程
    • 17 篇 信息与通信工程
    • 12 篇 生物医学工程(可授...
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 交通运输工程
    • 5 篇 仪器科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 安全科学与工程
    • 4 篇 土木工程
  • 3,344 篇 医学
    • 3,343 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 250 篇 理学
    • 198 篇 系统科学
    • 29 篇 物理学
    • 21 篇 生物学
    • 15 篇 数学
    • 9 篇 统计学(可授理学、...
    • 4 篇 化学
  • 17 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 5,633 篇 computer vision
  • 2,668 篇 training
  • 2,203 篇 pattern recognit...
  • 1,747 篇 computational mo...
  • 1,502 篇 visualization
  • 1,360 篇 three-dimensiona...
  • 1,074 篇 semantics
  • 999 篇 benchmark testin...
  • 986 篇 codes
  • 959 篇 computer archite...
  • 891 篇 deep learning
  • 777 篇 conferences
  • 754 篇 task analysis
  • 700 篇 feature extracti...
  • 561 篇 transformers
  • 533 篇 face recognition
  • 527 篇 neural networks
  • 495 篇 object detection
  • 490 篇 image segmentati...
  • 468 篇 cameras

机构

  • 174 篇 univ sci & techn...
  • 145 篇 carnegie mellon ...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 134 篇 chinese univ hon...
  • 110 篇 zhejiang univ pe...
  • 109 篇 peng cheng lab p...
  • 99 篇 swiss fed inst t...
  • 91 篇 tsinghua univers...
  • 90 篇 shanghai ai lab ...
  • 87 篇 sensetime res pe...
  • 86 篇 shanghai jiao to...
  • 83 篇 zhejiang univers...
  • 82 篇 tech univ munich...
  • 79 篇 university of sc...
  • 79 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 australian natl ...
  • 76 篇 alibaba grp peop...
  • 75 篇 peng cheng labor...

作者

  • 75 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 37 篇 loy chen change
  • 36 篇 tao dacheng
  • 32 篇 zhou jie
  • 31 篇 chen chen
  • 30 篇 liu yang
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 29 篇 zha zheng-jun
  • 28 篇 li xin
  • 27 篇 qi tian
  • 26 篇 vasconcelos nuno
  • 25 篇 liu xiaoming
  • 25 篇 darrell trevor
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping
  • 24 篇 ying shan

语言

  • 11,863 篇 英文
  • 25 篇 其他
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024"
11889 条 记 录,以下是4921-4930 订阅
排序:
The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth
The Temporal Opportunist: Self-Supervised Multi-Frame Monocu...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Watson, Jamie Mac Aodha, Oisin Prisacariu, Victor Brostow, Gabriel Firman, Michael Niantic San Francisco CA 94111 USA Univ Edinburgh Edinburgh Midlothian Scotland Univ Oxford Oxford England UCL London England
Self-supervised monocular depth estimation networks are trained to predict scene depth using nearby frames as a supervision signal during training. However, for many applications, sequence information in the form of v... 详细信息
来源: 评论
How to Calibrate Your Event Camera
How to Calibrate Your Event Camera
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Muglikar, Manasi Gehrig, Mathias Gehrig, Daniel Scaramuzza, Davide Univ Zurich Dept Informat Zurich Switzerland Univ Zurich Dept Neuroinformat Zurich Switzerland Swiss Fed Inst Technol Zurich Switzerland
We propose a generic event camera calibration framework using image reconstruction. Instead of relying on blinking LED patterns or external screens, we show that neural-network-based image reconstruction is well suite... 详细信息
来源: 评论
Object-Aware Distillation Pyramid for Open-Vocabulary Object Detection
Object-Aware Distillation Pyramid for Open-Vocabulary Object...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Luting Liu, Yi Du, Penghui Ding, Zihan Liao, Yue Qi, Qiaosong Chen, Biaolong Liu, Si Beihang Univ Inst Artificial Intelligence Beijing Peoples R China Alibaba Grp Hangzhou Peoples R China Beihang Univ Hangzhou Innovat Inst Beijing Peoples R China
Open-vocabulary object detection aims to provide object detectors trained on a fixed set of object categories with the generalizability to detect objects described by arbitrary text queries. Previous methods adopt kno... 详细信息
来源: 评论
Encapsulating the impact of transfer learning, domain knowledge and training strategies in deep-learning based architecture: A biometric based case study  31
Encapsulating the impact of transfer learning, domain knowle...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Singh, Avantika Nigam, Aditya Indian Inst Technol Mandi Mandi India
In this paper, efforts have been made to analyze the impact of training strategies, transfer learning and domain knowledge on two biometric-based problems namely: three class oculus classification and fingerprint sens... 详细信息
来源: 评论
SymDNN: Simple & Effective Adversarial Robustness for Embedded Systems
SymDNN: Simple & Effective Adversarial Robustness for Embedd...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Dey, Swarnava Dasgupta, Pallab Chakrabarti, Partha P. Indian Inst Technol Kharagpur Kharagpur 721302 W Bengal India
We propose SymDNN, a Deep Neural Network (DNN) inference scheme, to segment an input image into small patches, replace those patches with representative symbols, and use the reconstructed image for CNN inference. This... 详细信息
来源: 评论
Rethinking Class Relations: Absolute-relative Supervised and Unsupervised Few-shot Learning
Rethinking Class Relations: Absolute-relative Supervised and...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Hongguang Koniusz, Piotr Jian, Songlei Li, Hongdong Torr, Philip H. S. AMS Syst Engn Inst Beijing Peoples R China Australian Natl Univ Canberra ACT Australia Data61 CSIRO Sydney NSW Australia Univ Oxford Oxford England Natl Univ Def Technol Changsha Hunan Peoples R China
The majority of existing few-shot learning methods describe image relations with binary labels. However, such binary relations are insufficient to teach the network complicated real-world relations, due to the lack of... 详细信息
来源: 评论
Modeling Relationships in Referential Expressions with Compositional Modular Networks  30
Modeling Relationships in Referential Expressions with Compo...
收藏 引用
30th ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hu, Ronghang Rohrbach, Marcus Andreas, Jacob Darrell, Trevor Saenko, Kate Univ Calif Berkeley Berkeley CA 94720 USA Boston Univ Boston MA 02215 USA
People often refer to entities in an image in terms of their relationships with other entities. For example, the black cat sitting under the table refers to both a black cat entity and its relationship with another ta... 详细信息
来源: 评论
φ-SfT: Shape-from-Template with a Physics-Based Deformation Model
φ-SfT: Shape-from-Template with a Physics-Based Deformation...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kairanda, Navami Tretschk, Edith Elgharib, Mohamed Theobalt, Christian Golyanik, Vladislav Max Planck Inst Informat SIC Saarbrucken Germany Saarland Univ SIC Saarbrucken Germany
Shape-from-Template (SIT) methods estimate 3D surface deformations from a single monocular RGB camera while assuming a 3D state known in advance (a template). This is an important yet challenging problem due to the un... 详细信息
来源: 评论
Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset, Benchmarks and Challenges
Towards Semantic Segmentation of Urban-Scale 3D Point Clouds...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hu, Qingyong Yang, Bo Khalid, Sheikh Xiao, Wen Trigoni, Niki Markham, Andrew Univ Oxford Oxford England Hong Kong Polytech Univ Hong Kong Peoples R China Sensat Ltd London England Newcastle Univ Newcastle Upon Tyne Tyne & Wear England
An essential prerequisite for unleashing the potential of supervised deep learning algorithms in the area of 3D scene understanding is the availability of large-scale and richly annotated datasets. However, publicly a... 详细信息
来源: 评论
OW-DETR: Open-world Detection Transformer
OW-DETR: Open-world Detection Transformer
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gupta, Akshita Narayan, Sanath Joseph, K. J. Khan, Salman Khan, Fahad Shahbaz Shah, Mubarak Incept Inst Artificial Intelligence Abu Dhabi U Arab Emirates IIT Hyderabad Hyderabad India Australian Natl Univ Canberra ACT Australia Mohamed Bin Zayed Univ Artificial Intelligence Abu Dhabi U Arab Emirates Linkoping Univ CVL Linkoping Sweden Univ Cent Florida Orlando FL 32816 USA
Open-world object detection (OWOD) is a challenging computer vision problem, where the task is to detect a known set of object categories while simultaneously identifying unknown objects. Additionally, the model must ... 详细信息
来源: 评论