咨询与建议

限定检索结果

文献类型

  • 11,885 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 11,890 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,059 篇 工学
    • 7,617 篇 计算机科学与技术...
    • 796 篇 机械工程
    • 688 篇 电气工程
    • 360 篇 软件工程
    • 228 篇 控制科学与工程
    • 40 篇 光学工程
    • 19 篇 生物工程
    • 17 篇 信息与通信工程
    • 12 篇 生物医学工程(可授...
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 交通运输工程
    • 5 篇 仪器科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 安全科学与工程
    • 4 篇 土木工程
  • 3,347 篇 医学
    • 3,346 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 253 篇 理学
    • 198 篇 系统科学
    • 32 篇 物理学
    • 21 篇 生物学
    • 18 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 17 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 5,633 篇 computer vision
  • 2,668 篇 training
  • 2,203 篇 pattern recognit...
  • 1,747 篇 computational mo...
  • 1,502 篇 visualization
  • 1,360 篇 three-dimensiona...
  • 1,074 篇 semantics
  • 999 篇 benchmark testin...
  • 986 篇 codes
  • 959 篇 computer archite...
  • 891 篇 deep learning
  • 777 篇 conferences
  • 754 篇 task analysis
  • 700 篇 feature extracti...
  • 561 篇 transformers
  • 533 篇 face recognition
  • 527 篇 neural networks
  • 495 篇 object detection
  • 490 篇 image segmentati...
  • 468 篇 cameras

机构

  • 174 篇 univ sci & techn...
  • 145 篇 carnegie mellon ...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 134 篇 chinese univ hon...
  • 110 篇 zhejiang univ pe...
  • 109 篇 peng cheng lab p...
  • 99 篇 swiss fed inst t...
  • 91 篇 tsinghua univers...
  • 90 篇 shanghai ai lab ...
  • 87 篇 sensetime res pe...
  • 86 篇 shanghai jiao to...
  • 83 篇 zhejiang univers...
  • 82 篇 tech univ munich...
  • 79 篇 university of sc...
  • 79 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 australian natl ...
  • 76 篇 alibaba grp peop...
  • 75 篇 peng cheng labor...

作者

  • 75 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 37 篇 loy chen change
  • 36 篇 tao dacheng
  • 32 篇 zhou jie
  • 31 篇 chen chen
  • 30 篇 liu yang
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 29 篇 zha zheng-jun
  • 28 篇 li xin
  • 27 篇 qi tian
  • 26 篇 vasconcelos nuno
  • 25 篇 liu xiaoming
  • 25 篇 darrell trevor
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping
  • 24 篇 ying shan

语言

  • 11,863 篇 英文
  • 26 篇 其他
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024"
11890 条 记 录,以下是521-530 订阅
排序:
Neural Contours: Learning to Draw Lines from 3D Shapes
Neural Contours: Learning to Draw Lines from 3D Shapes
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liu, Difan Nabail, Mohamed Hertzmann, Aaron Kalogerakis, Evangelos Univ Massachusetts Amherst Amherst MA 01003 USA Adobe Res San Francisco CA USA
This paper introduces a method for learning to generate line drawings from 3D models. Our architecture incorporates a differentiable module operating on geometric features of the 3D model, and an image-based module op... 详细信息
来源: 评论
Representation Flow for Action recognition  32
Representation Flow for Action Recognition
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Piergiovanni, A. J. Ryoo, Michael S. Indiana Univ Dept Comp Sci Bloomington IN 47408 USA
In this paper, we propose a convolutional layer inspired by optical flow algorithms to learn motion representations. Our representation flow layer is a fully-differentiable layer designed to capture the 'flow'... 详细信息
来源: 评论
Human Hands as Probes for Interactive Object Understanding
Human Hands as Probes for Interactive Object Understanding
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Goyal, Mohit Modi, Sahil Goyal, Rishabh Gupta, Saurabh Univ Illinois Champaign IL 61820 USA
Interactive object understanding, or what we can do to objects and how is a long-standing goal of computer vision. In this paper, we tackle this problem through observation of human hands in in-the-wild egocentric vid... 详细信息
来源: 评论
The Neglected Tails in vision-Language Models
The Neglected Tails in Vision-Language Models
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Parashar, Shubham Lin, Zhiqiu Liu, Tian Dong, Xiangjue Li, Yanan Ramanan, Deva Caverlee, James Kong, Shu Texas A&M Univ College Stn TX 77840 USA Carnegie Mellon Univ Pittsburgh PA 15213 USA Zhejiang Lab Hangzhou Peoples R China Univ Macau Taipa Macao Peoples R China
vision-language models (VLMs) excel in zero-shot recognition but their performance varies greatly across different visual concepts. For example, although CLIP achieves impressive accuracy on ImageNet (60-80%), its per... 详细信息
来源: 评论
Camera Pose Estimation using Implicit Distortion Models
Camera Pose Estimation using Implicit Distortion Models
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Pan, Linfei Pollefeys, Marc Larsson, Viktor Swiss Fed Inst Technol Zurich Switzerland Microsoft Redmond WA USA Lund Univ Lund Sweden
Low-dimensional parametric models are the de-facto standard in computer vision for intrinsic camera calibration. These models explicitly describe the mapping between incoming viewing rays and image pixels. In this pap... 详细信息
来源: 评论
NTIRE 2024 Challenge on Night Photography Rendering
NTIRE 2024 Challenge on Night Photography Rendering
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ershov, Egor Panshin, Artyom Karasev, Oleg Korchagin, Sergey Lev, Shepelev Startsev, Alexandr Vladimirov, Daniil Zaychenkova, Ekaterina Banic, Nikola Iarchuk, Dmitrii R. Efimova, Maria Timofte, Radu Terekhin, Arseniy Kharkevich Inst Inst Informat Transmiss Problems Moscow Russia Artifitial Intelligence Res Inst AIRI Moscow Russia Gideon Bros Osijek Croatia Swiss Fed Inst Technol Zurich Zurich Switzerland Univ Wurzburg Wurzburg Germany
This paper presents a review of the NTIRE 2024 challenge on night photography rendering. The goal of the challenge was to find solutions that process raw camera images taken in nighttime conditions, and thereby produc... 详细信息
来源: 评论
Seeing the Unseen: Visual Common Sense for Semantic Placement
Seeing the Unseen: Visual Common Sense for Semantic Placemen...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ramrakhya, Ram Kembhavi, Aniruddha Batra, Dhruv Kira, Zsolt Zeng, Kuo-Hao Weihs, Luca Georgia Inst Technol Atlanta GA 30332 USA PRIOR Allen Inst AI Seattle WA USA PRIOR AI2 Seattle WA USA
computer vision tasks typically involve describing what is present in an image (e.g. classification, detection, segmentation, and captioning). We study a visual common sense task that requires understanding 'what ... 详细信息
来源: 评论
Multiple Instance Captioning: Learning Representations from Histopathology Textbooks and Articles
Multiple Instance Captioning: Learning Representations from ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gamper, Jevgenij Rajpoot, Nasir Univ Warwick Coventry W Midlands England
We present ARCH, a computational pathology (CP) multiple instance captioning dataset to facilitate dense supervision of CP tasks. Existing CP datasets focus on narrow tasks;ARCH on the other hand contains dense diagno... 详细信息
来源: 评论
Video Frame Interpolation via Direct Synthesis with the Event-based Reference
Video Frame Interpolation via Direct Synthesis with the Even...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liu, Yuhan Deng, Yongjian Chen, Hao Yang, Hen Beijing Univ Technol Coll Comp Sci Beijing Peoples R China Southeast Univ Key Lab Comp Network & Informat Integrat Dhaka Bangladesh
Video Frame Interpolation (VFI) has witnessed a surge in popularity due to its abundant downstream applications. Event-based VFI (E-VFI) has recently propelled the advancement of VFI. Thanks to the high temporal resol... 详细信息
来源: 评论
End-to-End Learned Random Walker for Seeded Image Segmentation  32
End-to-End Learned Random Walker for Seeded Image Segmentati...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cerrone, Lorenzo Zeilmann, Alexander Hamprecht, Fred A. Heidelberg Univ Heidelberg Collaboratory Image Proc IWR Heidelberg Germany
We present an end-to-end learned algorithm for seeded segmentation. Our method is based on the Random Walker algorithm, where we predict the edge weights of the un- derlying graph using a convolutional neural network.... 详细信息
来源: 评论