咨询与建议

限定检索结果

文献类型

  • 11,885 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 11,890 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,059 篇 工学
    • 7,617 篇 计算机科学与技术...
    • 796 篇 机械工程
    • 688 篇 电气工程
    • 360 篇 软件工程
    • 228 篇 控制科学与工程
    • 40 篇 光学工程
    • 19 篇 生物工程
    • 17 篇 信息与通信工程
    • 12 篇 生物医学工程(可授...
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 交通运输工程
    • 5 篇 仪器科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 安全科学与工程
    • 4 篇 土木工程
  • 3,347 篇 医学
    • 3,346 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 253 篇 理学
    • 198 篇 系统科学
    • 32 篇 物理学
    • 21 篇 生物学
    • 18 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 17 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 5,633 篇 computer vision
  • 2,668 篇 training
  • 2,203 篇 pattern recognit...
  • 1,747 篇 computational mo...
  • 1,502 篇 visualization
  • 1,360 篇 three-dimensiona...
  • 1,074 篇 semantics
  • 999 篇 benchmark testin...
  • 986 篇 codes
  • 959 篇 computer archite...
  • 891 篇 deep learning
  • 777 篇 conferences
  • 754 篇 task analysis
  • 700 篇 feature extracti...
  • 561 篇 transformers
  • 533 篇 face recognition
  • 527 篇 neural networks
  • 495 篇 object detection
  • 490 篇 image segmentati...
  • 468 篇 cameras

机构

  • 174 篇 univ sci & techn...
  • 145 篇 carnegie mellon ...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 134 篇 chinese univ hon...
  • 110 篇 zhejiang univ pe...
  • 109 篇 peng cheng lab p...
  • 99 篇 swiss fed inst t...
  • 91 篇 tsinghua univers...
  • 90 篇 shanghai ai lab ...
  • 87 篇 sensetime res pe...
  • 86 篇 shanghai jiao to...
  • 83 篇 zhejiang univers...
  • 82 篇 tech univ munich...
  • 79 篇 university of sc...
  • 79 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 australian natl ...
  • 76 篇 alibaba grp peop...
  • 75 篇 peng cheng labor...

作者

  • 75 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 37 篇 loy chen change
  • 36 篇 tao dacheng
  • 32 篇 zhou jie
  • 31 篇 chen chen
  • 30 篇 liu yang
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 29 篇 zha zheng-jun
  • 28 篇 li xin
  • 27 篇 qi tian
  • 26 篇 vasconcelos nuno
  • 25 篇 liu xiaoming
  • 25 篇 darrell trevor
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping
  • 24 篇 ying shan

语言

  • 11,863 篇 英文
  • 26 篇 其他
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024"
11890 条 记 录,以下是571-580 订阅
排序:
VMRNN: Integrating vision Mamba and LSTM for Efficient and Accurate Spatiotemporal Forecasting
VMRNN: Integrating Vision Mamba and LSTM for Efficient and A...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Tang, Yujin Dong, Peijie Tang, Zhenheng Chu, Xiaowen Liang, Junwei Hong Kong Univ Sci & Technol Guangzhou AI Thrust Guangzhou Peoples R China Hong Kong Univ Sci & Technol Guangzhou DSA Thrust Guangzhou Peoples R China Hong Kong Baptist Univ Dept Comp Sci Hong Kong Peoples R China Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong Peoples R China
Combining Convolutional Neural Networks (CNNs) or vision Transformers(ViTs) with Recurrent Neural Networks (RNNs) for spatiotemporal forecasting has yielded unparalleled results in predicting temporal and spatial dyna... 详细信息
来源: 评论
Segment Anything Model for Road Network Graph Extraction
Segment Anything Model for Road Network Graph Extraction
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hetang, Congrui Xue, Haoru Le, Cindy Yue, Tianwei Wang, Wenping He, Yihui Carnegie Mellon Univ Pittsburgh PA 15213 USA Columbia Univ New York NY USA
We propose SAM-Road, an adaptation of the Segment Anything Model (SAM) [27] for extracting large-scale, vectorized road network graphs from satellite imagery. To predict graph geometry, we formulate it as a dense sema... 详细信息
来源: 评论
BEHAVIOR vision Suite: Customizable Dataset Generation via Simulation
BEHAVIOR Vision Suite: Customizable Dataset Generation via S...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ge, Yunhao Tang, Yihe Xu, Jiashu Gokmen, Cem Li, Chengshu Ai, Wensi Martinez, Benjamin Jose Aydin, Arman Anvari, Mona Chakravarthy, Ayush K. Yu, Hong-Xing Wong, Josiah Srivastava, Sanjana Lee, Sharon Zhang, Shengxin Itti, Laurent Li, Yunzhu Martin-Martins, Roberto Liu, Miao Zhang, Pengchuan Zhang, Ruohan Fei-Fei, Li Wu, Jiajun Stanford Univ Stanford CA 94305 USA Univ Southern Calif Los Angeles CA 90007 USA Harvard Univ Cambridge MA 02138 USA Meta GenAI Menlo Pk CA USA Meta FAIR Menlo Pk CA USA Univ Texas Austin Austin TX USA Univ Illinois Urbana IL USA
The systematic evaluation and understanding of computer vision models under varying conditions require large amounts of data with comprehensive and customized labels, which real-world vision datasets rarely satisfy. W... 详细信息
来源: 评论
Test-Time Zero-Shot Temporal Action Localization
Test-Time Zero-Shot Temporal Action Localization
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liberatori, Benedetta Conti, Alessandro Rota, Paolo Wang, Yiming Ricci, Elisa Univ Trento Trento Italy Fdn Bruno Kessler Trento Italy
Zero-Shot Temporal Action Localization (ZS-TAL) seeks to identify and locate actions in untrimmed videos unseen during training. Existing ZS-TAL methods involve fine-tuning a model on a large amount of annotated train... 详细信息
来源: 评论
Automatic recognition of Food Ingestion Environment from the AIM-2 Wearable Sensor
Automatic Recognition of Food Ingestion Environment from the...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Huang, Yuning Hassan, M. A. He, Jiangpeng Higgins, J. McCrory, Megan Eicher-Miller, Heather Thomas, J. Graham Sazonov, Edward Zhu, Fengqing Purdue Univ W Lafayette IN 47907 USA Univ Calif Davis Davis CA 95616 USA Univ Colorado Aurora CO USA Boston Univ Boston MA 02215 USA Brown Univ Providence RI 02912 USA Univ Alabama Tuscaloosa AL USA
Detecting an ingestion environment is an important aspect of monitoring dietary intake. It provides insightful information for dietary assessment. However, it is a challenging problem where human-based reviewing can b... 详细信息
来源: 评论
AIGeN: An Adversarial Approach for Instruction Generation in VLN
AIGeN: An Adversarial Approach for Instruction Generation in...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Rawal, Niyati Bigazzi, Roberto Baraldi, Lorenzo Cucchiara, Rita Univ Modena & Reggio Emilia Modena Italy
In the last few years, the research interest in vision-and-Language Navigation (VLN) has grown significantly. VLN is a challenging task that involves an agent following human instructions and navigating in a previousl... 详细信息
来源: 评论
Scattering Prompt Tuning: A Fine-tuned Foundation Model for SAR Object recognition
Scattering Prompt Tuning: A Fine-tuned Foundation Model for ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Guo, Weilong Li, Shengyang Yang, Jian Chinese Acad Sci Key Lab Space Utilizat Beijing 100864 Peoples R China Chinese Acad Sci Technol & Engn Ctr Space Utilizat Beijing 100864 Peoples R China Univ Chinese Acad Sci Beijing Peoples R China
Synthetic Aperture Radar (SAR) serves as a vital tool in various earth observation applications, providing robust imaging under challenging weather conditions. While the fine-tuned foundation models excel in many down... 详细信息
来源: 评论
Multi-modal In-Context Learning Makes an Ego-evolving Scene Text Recognizer
Multi-modal In-Context Learning Makes an Ego-evolving Scene ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Zhen Tang, Jingqun Lin, Chunhui Wu, Binghong Huang, Can Liu, Hao Tan, Xin Zhang, Zhizhong Xie, Yuan East China Normal Univ Shanghai Peoples R China ByteDance Beijing Peoples R China
Scene text recognition (STR) in the wild frequently encounters challenges when coping with domain variations, font diversity, shape deformations, etc. A straight-forward solution is performing model fine-tuning tailor... 详细信息
来源: 评论
OPERA: Alleviating Hallucination in Multi-Modal Large Language Models via Over-Trust Penalty and Retrospection-Allocation
OPERA: Alleviating Hallucination in Multi-Modal Large Langua...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hu, Qidong Dong, Xiaoyi Zhang, Pan Wang, Bin He, Conghui Wang, Jiaqi Lin, Dahua Zhang, Weiming Yu, Nenghai Univ Sci & Technol China Anhui Prov Key Lab Digital Secur Hefei Peoples R China Shanghai AI Lab Shanghai Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
Hallucination, posed as a pervasive challenge of multi-modal large language models (MLLMs), has significantly impeded their real-world usage that demands precise judgment. Existing methods mitigate this issue with eit... 详细信息
来源: 评论
Once for Both: Single Stage of Importance and Sparsity Search for vision Transformer Compression
Once for Both: Single Stage of Importance and Sparsity Searc...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ye, Hancheng Yu, Chong Ye, Peng Xia, Renqiu Tang, Yansong Lu, Jiwen Chen, Tao Zhang, Bo Fudan Univ Sch Informat Sci & Technol Shanghai Peoples R China Shanghai Artificial Intelligence Lab Shanghai Peoples R China Fudan Univ Acad Engn & Technol Shanghai Peoples R China Shanghai Jiao Tong Univ Shanghai Peoples R China Tsinghua Univ Beijing Peoples R China
Recent vision Transformer Compression (VTC) works mainly follow a two-stage scheme, where the importance score of each model unit is first evaluated or preset in each submodule, followed by the sparsity score evaluati... 详细信息
来源: 评论