咨询与建议

限定检索结果

文献类型

  • 11,885 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 11,890 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,059 篇 工学
    • 7,617 篇 计算机科学与技术...
    • 796 篇 机械工程
    • 688 篇 电气工程
    • 360 篇 软件工程
    • 228 篇 控制科学与工程
    • 40 篇 光学工程
    • 19 篇 生物工程
    • 17 篇 信息与通信工程
    • 12 篇 生物医学工程(可授...
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 交通运输工程
    • 5 篇 仪器科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 安全科学与工程
    • 4 篇 土木工程
  • 3,347 篇 医学
    • 3,346 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 253 篇 理学
    • 198 篇 系统科学
    • 32 篇 物理学
    • 21 篇 生物学
    • 18 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 17 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 5,633 篇 computer vision
  • 2,668 篇 training
  • 2,203 篇 pattern recognit...
  • 1,747 篇 computational mo...
  • 1,502 篇 visualization
  • 1,360 篇 three-dimensiona...
  • 1,074 篇 semantics
  • 999 篇 benchmark testin...
  • 986 篇 codes
  • 959 篇 computer archite...
  • 891 篇 deep learning
  • 777 篇 conferences
  • 754 篇 task analysis
  • 700 篇 feature extracti...
  • 561 篇 transformers
  • 533 篇 face recognition
  • 527 篇 neural networks
  • 495 篇 object detection
  • 490 篇 image segmentati...
  • 468 篇 cameras

机构

  • 174 篇 univ sci & techn...
  • 145 篇 carnegie mellon ...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 134 篇 chinese univ hon...
  • 110 篇 zhejiang univ pe...
  • 109 篇 peng cheng lab p...
  • 99 篇 swiss fed inst t...
  • 91 篇 tsinghua univers...
  • 90 篇 shanghai ai lab ...
  • 87 篇 sensetime res pe...
  • 86 篇 shanghai jiao to...
  • 83 篇 zhejiang univers...
  • 82 篇 tech univ munich...
  • 79 篇 university of sc...
  • 79 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 australian natl ...
  • 76 篇 alibaba grp peop...
  • 75 篇 peng cheng labor...

作者

  • 75 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 37 篇 loy chen change
  • 36 篇 tao dacheng
  • 32 篇 zhou jie
  • 31 篇 chen chen
  • 30 篇 liu yang
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 29 篇 zha zheng-jun
  • 28 篇 li xin
  • 27 篇 qi tian
  • 26 篇 vasconcelos nuno
  • 25 篇 liu xiaoming
  • 25 篇 darrell trevor
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping
  • 24 篇 ying shan

语言

  • 11,863 篇 英文
  • 26 篇 其他
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024"
11890 条 记 录,以下是671-680 订阅
排序:
Plateau-reduced Differentiable Path Tracing
Plateau-reduced Differentiable Path Tracing
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Fischer, Michael Ritschel, Tobias UCL London England
Current differentiable renderers provide light transport gradients with respect to arbitrary scene parameters. However, the mere existence of these gradients does not guarantee useful update steps in an optimization. ... 详细信息
来源: 评论
Multiclass Confidence and Localization Calibration for Object Detection
Multiclass Confidence and Localization Calibration for Objec...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Pathiraja, Bimsara Gunawardhana, Malitha Khan, Muhammad Haris Mohamed Bin Zayed Univ Artificial Intelligence Abu Dhabi U Arab Emirates
Albeit achieving high predictive accuracy across many challenging computer vision problems, recent studies suggest that deep neural networks (DNNs) tend to make overconfident predictions, rendering them poorly calibra... 详细信息
来源: 评论
Visual Programming: Compositional visual reasoning without training
Visual Programming: Compositional visual reasoning without t...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gupta, Tanmay Kembhavi, Aniruddha PRIOR Allen Inst AI Seattle WA 98103 USA
We present VISPROG, a neuro-symbolic approach to solving complex and compositional visual tasks given natural language instructions. VISPROG avoids the need for any task-specific training. Instead, it uses the in-cont... 详细信息
来源: 评论
Scaling Language-Image Pre-training via Masking
Scaling Language-Image Pre-training via Masking
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Yanghao Fan, Haoqi Hu, Ronghang Feichtenhofert, Christoph He, Kaiming Meta AI FAIR New York NY 10023 USA
We present Fast Language-Image Pre-training (FLIP), a simple and more efficient method for training CLIP [52]. Our method randomly masks out and removes a large portion of image patches during training. Masking allows... 详细信息
来源: 评论
Second Edition FRCSyn Challenge at cvpr 2024: Face recognition Challenge in the Era of Synthetic Data
Second Edition FRCSyn Challenge at CVPR 2024: Face Recogniti...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: DeAndres-Tame, Ivan Tolosana, Ruben Melzi, Pietro Vera-Rodriguez, Ruben Kim, Minchul Rathgeb, Christian Liu, Xiaoming Morales, Aythami Fierrez, Julian Ortega-Garcia, Javier Zhong, Zhizhou Huang, Yuge Mi, Yuxi Ding, Shouhong Zhou, Shuigeng He, Shuai Fu, Lingzhi Cong, Heng Zhang, Rongyu Xiao, Zhihong Smirnov, Evgeny Pimenov, Anton Grigorev, Aleksei Timoshenko, Denis Asfaw, Kaleb Mesfin Low, Cheng Yaw Liu, Hao Wang, Chuyi Zuo, Qing He, Zhixiang Shahreza, Hatef Otroshi George, Anjith Unnervik, Alexander Rahimi, Parsa Marcel, Ebastien Neto, Pedro C. Huber, Marco Kolf, Jan Niklas Damer, Naser Boutros, Fadi Cardoso, Jaime S. Sequeira, Ana F. Atzori, Andrea Fenu, Gianni Marras, Mirko Struc, Vitomir Yu, Jiang Li, Zhangjie Li, Jichun Zhao, Weisong Lei, Zhen Zhu, Xiangyu Zhang, Xiao-Yu Biesseck, Bernardo Vidal, Pedro Coelho, Luiz Granada, Roger Menotti, David Univ Autonoma Madrid Madrid Spain Michigan State Univ E Lansing MI 48824 USA Hsch Darmstadt Darmstadt Germany Fudan Univ Shanghai Peoples R China Tencent Youtu Lab Shanghai Peoples R China Netease Inc Interact Entertainment Grp Guangzhou Peoples R China ID R&D Inc New York NY USA Korea Adv Inst Sci & Technol Daejeon South Korea Inst for Basic Sci Korea Daejeon South Korea China Telecom AI Beijing Peoples R China Idiap Res Inst Martigny Switzerland Ecole Polytech Fed Lausanne Lausanne Switzerland Univ Lausanne Lausanne Switzerland INESC TEC Porto Portugal Univ Porto Porto Portugal Fraunhofer IGD Darmstadt Germany Univ Cagliari Cagliari Italy Univ Ljubljana Ljubljana Slovenia Samsung Elect China R&D Ctr Shenzhen Peoples R China Univ Sci & Technol Hefei Peoples R China Chinese Acad Sci IIE Beijing Peoples R China CASIA MAIS Shanghai Peoples R China Univ Fed Parana Curitiba Parana Brazil Fed Inst Mato Grosso Cuiaba Brazil Unico IdTech Sao Paulo Brazil
Synthetic data is gaining increasing relevance for training machine learning models. This is mainly motivated due to several factors such as the lack of real data and intra-class variability, time and errors produced ... 详细信息
来源: 评论
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Chien-Yao Bochkovskiy, Alexey Liao, Hong-Yuan Mark Acad Sinica Inst Informat Sci Taipei Taiwan
Real-time object detection is one of the most important research topics in computer vision. As new approaches regarding architecture optimization and training optimization are continually being developed, we have foun... 详细信息
来源: 评论
How you feelin'? Learning Emotions and Mental States in Movie Scenes
How you feelin'? Learning Emotions and Mental States in Movi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Srivastava, Dhruv Singh, Aditya Kumar Tapaswi, Makarand IIIT Hyderabad CVIT Hyderabad Telangana India
Movie story analysis requires understanding characters' emotions and mental states. Towards this goal, we formulate emotion understanding as predicting a diverse and multi-label set of emotions at the level of a m... 详细信息
来源: 评论
Adversarial Counterfactual Visual Explanations
Adversarial Counterfactual Visual Explanations
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Jeanneret, Guillaume Simon, Loic Jurie, Frederic Univ Caen Normandie ENSICAEN CNRS Caen France
Counterfactual explanations and adversarial attacks have a related goal: flipping output labels with minimal perturbations regardless of their characteristics. Yet, adversarial attacks cannot be used directly in a cou... 详细信息
来源: 评论
DNeRV: Modeling Inherent Dynamics via Difference Neural Representation for Videos
DNeRV: Modeling Inherent Dynamics via Difference Neural Repr...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Qi Asif, M. Salman Ma, Zhan Nanjing Univ Nanjing Peoples R China Univ Calif Riverside CA USA
Existing implicit neural representation (INR) methods do not fully exploit spatiotemporal redundancies in videos. Index-based INRs ignore the content-specific spatial features and hybrid INRs ignore the contextual dep... 详细信息
来源: 评论
Interactive and Explainable Region-guided Radiology Report Generation
Interactive and Explainable Region-guided Radiology Report G...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Tanida, Tim Muller, Philip Kaissis, Georgios Rueckert, Daniel Tech Univ Munich Munich Germany Helmholtz Zentrum Munich Munich Germany Imperial Coll London London England
The automatic generation of radiology reports has the potential to assist radiologists in the time-consuming task of report writing. Existing methods generate the full report from image-level features, failing to expl... 详细信息
来源: 评论