咨询与建议

限定检索结果

文献类型

  • 11,885 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 11,890 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,059 篇 工学
    • 7,617 篇 计算机科学与技术...
    • 796 篇 机械工程
    • 688 篇 电气工程
    • 360 篇 软件工程
    • 228 篇 控制科学与工程
    • 40 篇 光学工程
    • 19 篇 生物工程
    • 17 篇 信息与通信工程
    • 12 篇 生物医学工程(可授...
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 交通运输工程
    • 5 篇 仪器科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 安全科学与工程
    • 4 篇 土木工程
  • 3,347 篇 医学
    • 3,346 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 253 篇 理学
    • 198 篇 系统科学
    • 32 篇 物理学
    • 21 篇 生物学
    • 18 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 17 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 5,633 篇 computer vision
  • 2,668 篇 training
  • 2,203 篇 pattern recognit...
  • 1,747 篇 computational mo...
  • 1,502 篇 visualization
  • 1,360 篇 three-dimensiona...
  • 1,074 篇 semantics
  • 999 篇 benchmark testin...
  • 986 篇 codes
  • 959 篇 computer archite...
  • 891 篇 deep learning
  • 777 篇 conferences
  • 754 篇 task analysis
  • 700 篇 feature extracti...
  • 561 篇 transformers
  • 533 篇 face recognition
  • 527 篇 neural networks
  • 495 篇 object detection
  • 490 篇 image segmentati...
  • 468 篇 cameras

机构

  • 174 篇 univ sci & techn...
  • 145 篇 carnegie mellon ...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 134 篇 chinese univ hon...
  • 110 篇 zhejiang univ pe...
  • 109 篇 peng cheng lab p...
  • 99 篇 swiss fed inst t...
  • 91 篇 tsinghua univers...
  • 90 篇 shanghai ai lab ...
  • 87 篇 sensetime res pe...
  • 86 篇 shanghai jiao to...
  • 83 篇 zhejiang univers...
  • 82 篇 tech univ munich...
  • 79 篇 university of sc...
  • 79 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 australian natl ...
  • 76 篇 alibaba grp peop...
  • 75 篇 peng cheng labor...

作者

  • 75 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 37 篇 loy chen change
  • 36 篇 tao dacheng
  • 32 篇 zhou jie
  • 31 篇 chen chen
  • 30 篇 liu yang
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 29 篇 zha zheng-jun
  • 28 篇 li xin
  • 27 篇 qi tian
  • 26 篇 vasconcelos nuno
  • 25 篇 liu xiaoming
  • 25 篇 darrell trevor
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping
  • 24 篇 ying shan

语言

  • 11,863 篇 英文
  • 26 篇 其他
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024"
11890 条 记 录,以下是721-730 订阅
排序:
JAWS: Just A Wild Shot for Cinematic Transfer in Neural Radiance Fields
JAWS: Just A Wild Shot for Cinematic Transfer in Neural Radi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Xi Courant, Robin Shi, Jinglei Marchand, Eric Christie, Marc Univ Rennes CNRS INRIA IRISA Rennes France Ecole Polytech IP Paris LIX Paris France Nankai Univ VCIP CS Tianjin Peoples R China
This paper presents JAWS, an optimization-driven approach that achieves the robust transfer of visual cinematic features from a reference in-the-wild video clip to a newly generated clip. To this end, we rely on an im... 详细信息
来源: 评论
Optimal Proposal Learning for Deployable End-to-End Pedestrian Detection
Optimal Proposal Learning for Deployable End-to-End Pedestri...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Song, Xiaolin Chen, Binghui Li, Pengyu He, Jun-Yan Wang, Biao Geng, Yifeng Xie, Xuansong Zhang, Honggang Beijing Univ Posts & Telecommun Beijing Peoples R China
End-to-end pedestrian detection focuses on training a pedestrian detection model via discarding the Non-Maximum Suppression (NMS) post-processing. Though a few methods have been explored, most of them still suffer fro... 详细信息
来源: 评论
Benchmarking Self-Supervised Learning on Diverse Pathology Datasets
Benchmarking Self-Supervised Learning on Diverse Pathology D...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kang, Mingu Song, Heon Park, Seonwook Yoo, Donggeun Pereira, Sergio Lunit Inc Seoul South Korea
Computational pathology can lead to saving human lives, but models are annotation hungry and pathology images are notoriously expensive to annotate. Self-supervised learning (SSL) has shown to be an effective method f... 详细信息
来源: 评论
LightPainter: Interactive Portrait Relighting with Freehand Scribble
LightPainter: Interactive Portrait Relighting with Freehand ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Mei, Yiqun Zhang, He Zhang, Xuaner Zhang, Jianming Shu, Zhixin Wang, Yilin Wei, Zijun Yan, Shi Jung, HyunJoon Patel, Vishal M. Johns Hopkins Univ Baltimore MD 21218 USA Adobe Inc San Jose CA USA
Recent portrait relighting methods have achieved realistic results of portrait lighting effects given a desired lighting representation such as an environment map. However, these methods are not intuitive for user int... 详细信息
来源: 评论
ABCD : Arbitrary Bitwise Coefficient for De-quantization
ABCD : Arbitrary Bitwise Coefficient for De-quantization
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Han, Woo Kyoung Lee, Byeonghun Park, Sang Hyun Jin, Kyong Hwan Daegu Gyeongbuk Inst Sci & Technol DGIST Daegu South Korea
Modern displays and contents support more than 8bits image and video. However, bit-starving situations such as compression codecs make low bit-depth (LBD) images (<8bits), occurring banding and blurry artifacts. Pr... 详细信息
来源: 评论
AVFormer: Injecting vision into Frozen Speech Models for Zero-Shot AV-ASR
AVFormer: Injecting Vision into Frozen Speech Models for Zer...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Seo, Paul Hongsuck Nagrani, Arsha Schmid, Cordelia Google Res Mountain View CA 94043 USA
Audiovisual automatic speech recognition (AV-ASR) aims to improve the robustness of a speech recognition system by incorporating visual information. Training fully supervised multimodal models for this task from scrat... 详细信息
来源: 评论
Adaptive Sparse Pairwise Loss for Object Re-Identification
Adaptive Sparse Pairwise Loss for Object Re-Identification
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhou, Xiao Zhong, Yujie Cheng, Zhen Liang, Fan Ma, Lin Tsinghua Univ BNRist Dept Automat Beijing 100084 Peoples R China Meituan Inc Beijing Peoples R China
Object re-identification (ReID) aims to find instances with the same identity as the given probe from a large gallery. Pairwise losses play an important role in training a strong ReID network. Existing pairwise losses... 详细信息
来源: 评论
Ranking Regularization for Critical Rare Classes: Minimizing False Positives at a High True Positive Rate
Ranking Regularization for Critical Rare Classes: Minimizing...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Mohammadi, Kiarash Zhao, He Zhai, Mengyao Tung, Frederick Borealis AI Toronto ON Canada Univ Montreal Mila Montreal PQ Canada
In many real-world settings, the critical class is rare and a missed detection carries a disproportionately high cost. For example, tumors are rare and a false negative diagnosis could have severe consequences on trea... 详细信息
来源: 评论
FFCV: Accelerating Training by Removing Data Bottlenecks
FFCV: Accelerating Training by Removing Data Bottlenecks
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Leclerc, Guillaume Ilyas, Andrew Engstrom, Logan Park, Sung Min Salman, Hadi Madry, Aleksander MIT Cambridge MA 02139 USA
We present FFCV, a library for easy and fast machine learning model training. FFCV speeds up model training by eliminating (often subtle) data bottlenecks from the training process. In particular, we combine technique... 详细信息
来源: 评论
Towards Professional Level Crowd Annotation of Expert Domain Data
Towards Professional Level Crowd Annotation of Expert Domain...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Pei Vasconcelos, Nuno Univ Calif San Diego La Jolla CA 92093 USA
Image recognition on expert domains is usually fine-grained and requires expert labeling, which is costly. This limits dataset sizes and the accuracy of learning systems. To address this challenge, we consider annotat... 详细信息
来源: 评论