咨询与建议

限定检索结果

文献类型

  • 11,885 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 11,890 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8,059 篇 工学
    • 7,617 篇 计算机科学与技术...
    • 796 篇 机械工程
    • 688 篇 电气工程
    • 360 篇 软件工程
    • 228 篇 控制科学与工程
    • 40 篇 光学工程
    • 19 篇 生物工程
    • 17 篇 信息与通信工程
    • 12 篇 生物医学工程(可授...
    • 6 篇 电子科学与技术(可...
    • 6 篇 建筑学
    • 6 篇 交通运输工程
    • 5 篇 仪器科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 安全科学与工程
    • 4 篇 土木工程
  • 3,347 篇 医学
    • 3,346 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
  • 253 篇 理学
    • 198 篇 系统科学
    • 32 篇 物理学
    • 21 篇 生物学
    • 18 篇 数学
    • 9 篇 统计学(可授理学、...
    • 7 篇 化学
  • 17 篇 管理学
    • 12 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 军事学

主题

  • 5,633 篇 computer vision
  • 2,668 篇 training
  • 2,203 篇 pattern recognit...
  • 1,747 篇 computational mo...
  • 1,502 篇 visualization
  • 1,360 篇 three-dimensiona...
  • 1,074 篇 semantics
  • 999 篇 benchmark testin...
  • 986 篇 codes
  • 959 篇 computer archite...
  • 891 篇 deep learning
  • 777 篇 conferences
  • 754 篇 task analysis
  • 700 篇 feature extracti...
  • 561 篇 transformers
  • 533 篇 face recognition
  • 527 篇 neural networks
  • 495 篇 object detection
  • 490 篇 image segmentati...
  • 468 篇 cameras

机构

  • 174 篇 univ sci & techn...
  • 145 篇 carnegie mellon ...
  • 144 篇 univ chinese aca...
  • 144 篇 tsinghua univ pe...
  • 134 篇 chinese univ hon...
  • 110 篇 zhejiang univ pe...
  • 109 篇 peng cheng lab p...
  • 99 篇 swiss fed inst t...
  • 91 篇 tsinghua univers...
  • 90 篇 shanghai ai lab ...
  • 87 篇 sensetime res pe...
  • 86 篇 shanghai jiao to...
  • 83 篇 zhejiang univers...
  • 82 篇 tech univ munich...
  • 79 篇 university of sc...
  • 79 篇 stanford univ st...
  • 78 篇 univ hong kong p...
  • 77 篇 australian natl ...
  • 76 篇 alibaba grp peop...
  • 75 篇 peng cheng labor...

作者

  • 75 篇 timofte radu
  • 64 篇 van gool luc
  • 50 篇 zhang lei
  • 43 篇 yang yi
  • 37 篇 loy chen change
  • 36 篇 tao dacheng
  • 32 篇 zhou jie
  • 31 篇 chen chen
  • 30 篇 liu yang
  • 30 篇 tian qi
  • 29 篇 sun jian
  • 29 篇 zha zheng-jun
  • 28 篇 li xin
  • 27 篇 qi tian
  • 26 篇 vasconcelos nuno
  • 25 篇 liu xiaoming
  • 25 篇 darrell trevor
  • 24 篇 zheng wei-shi
  • 24 篇 luo ping
  • 24 篇 ying shan

语言

  • 11,863 篇 英文
  • 26 篇 其他
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024"
11890 条 记 录,以下是771-780 订阅
排序:
Learning Steerable Function for Efficient Image Resampling
Learning Steerable Function for Efficient Image Resampling
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Jiacheng Chen, Chang Huang, Wei Lang, Zhiqiang Song, Fenglong Yan, Youliang Xiong, Zhiwei Univ Sci & Technol China Chengdu Peoples R China Huawei Noahs Ark Lab Montreal PQ Canada
Image resampling is a basic technique that is widely employed in daily applications. Existing deep neural networks (DNNs) have made impressive progress in resampling performance. Yet these methods are still not the pe... 详细信息
来源: 评论
Seeing Beyond the Brain: Conditional Diffusion Model with Sparse Masked Modeling for vision Decoding
Seeing Beyond the Brain: Conditional Diffusion Model with Sp...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Zijiao Qing, Jiaxin Xiang, Tiange Yue, Wan Lin Zhou, Juan Helen Natl Univ Singapore Singapore Singapore Chinese Univ Hong Kong Hong Kong Peoples R China Stanford Univ Stanford CA USA
Decoding visual stimuli from brain recordings aims to deepen our understanding of the human visual system and build a solid foundation for bridging human and computer vision through the Brain-computer Interface. Howev... 详细信息
来源: 评论
Constrained Evolutionary Diffusion Filter for Monocular Endoscope Tracking
Constrained Evolutionary Diffusion Filter for Monocular Endo...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Luo, Xiongbiao Xiamen Univ Dept Comp Sci & Technol Xiamen Peoples R China Xiamen Univ Natl Inst Data Sci Hlth & Med Xiamen 361102 Peoples R China
Stochastic filtering is widely used to deal with nonlinear optimization problems such as 3-D and visual tracking in various computer vision and augmented reality applications. Many current methods suffer from an imbal... 详细信息
来源: 评论
Are Data-driven Explanations Robust against Out-of-distribution Data?
Are Data-driven Explanations Robust against Out-of-distribut...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Tang Qiao, Fenuchun Ma, Mengmeng Peng, Xi Univ Delaware Newark DE 19716 USA
As black-box models increasingly power high-stakes applications, a variety of data-driven explanation methods have been introduced. Meanwhile, machine learning models are constantly challenged by distributional shifts... 详细信息
来源: 评论
Hierarchical Temporal Transformer for 3D Hand Pose Estimation and Action recognition from Egocentric RGB Videos
Hierarchical Temporal Transformer for 3D Hand Pose Estimatio...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wen, Yilin Pan, Hao Yang, Lei Pan, Jia Komura, Taku Wang, Wenping Univ Hong Kong Hong Kong Peoples R China Microsoft Res Asia Beijing Peoples R China TransGP Hong Kong Peoples R China Texas A&M Univ College Stn TX USA
Understanding dynamic hand motions and actions from egocentric RGB videos is a fundamental yet challenging task due to self-occlusion and ambiguity. To address occlusion and ambiguity, we develop a transformer-based f... 详细信息
来源: 评论
STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action recognition
STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Ac...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhu, Xiaoyu Huang, Po-Yao Liang, Junwei de Melo, Celso M. Hauptmann, Alexander Carnegie Mellon Univ Pittsburgh PA 15213 USA Meta AI FAIR New York NY USA HKUST Guangzhou Guangzhou Peoples R China DEVCOM Army Res Lab Adelphi MD USA
We study the problem of human action recognition using motion capture (MoCap) sequences. Unlike existing techniques that take multiple manual steps to derive standardized skeleton representations as model input, we pr... 详细信息
来源: 评论
Gradient-based Uncertainty Attribution for Explainable Bayesian Deep Learning
Gradient-based Uncertainty Attribution for Explainable Bayes...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Hanjing Joshi, Dhiraj Wang, Shiqiang Ji, Qiang Rensselaer Polytech Inst Troy NY 12180 USA IBM Res Armonk NY USA
Predictions made by deep learning models are prone to data perturbations, adversarial attacks, and out-of-distribution inputs. To build a trusted AI system, it is therefore critical to accurately quantify the predicti... 详细信息
来源: 评论
Decoupling MaxLogit for Out-of-Distribution Detection
Decoupling MaxLogit for Out-of-Distribution Detection
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Zihan Xiang, Xiang Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat Key Lab Image Proc & Intelligent Control Minist Educ Wuhan Peoples R China
In machine learning, it is often observed that standard training outputs anomalously high confidence for both indistribution (ID) and out-of-distribution (OOD) data. Thus, the ability to detect OOD samples is critical... 详细信息
来源: 评论
ScaleDet: A Scalable Multi-Dataset Object Detector
ScaleDet: A Scalable Multi-Dataset Object Detector
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Yanbei Wang, Manchen Mittal, Abhay Xu, Zhenlin Favaro, Paolo Tighe, Joseph Modolo, Davide AWS AI Labs Shanghai Peoples R China
Multi-dataset training provides a viable solution for exploiting heterogeneous large-scale datasets without extra annotation cost. In this work, we propose a scalable multi-dataset detector (ScaleDet) that can scale u... 详细信息
来源: 评论
Bias in Pruned vision Models: In-Depth Analysis and Countermeasures
Bias in Pruned Vision Models: In-Depth Analysis and Counterm...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Iofinova, Eugenia Peste, Alexandra Alistarh, Dan IST Austria Klosterneuburg Austria Neural Magic Somerville NJ USA
Pruning-that is, setting a significant subset of the parameters of a neural network to zero-is one of the most popular methods of model compression. Yet, several recent works have raised the issue that pruning may ind... 详细信息
来源: 评论