咨询与建议

限定检索结果

文献类型

  • 4,653 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 4,655 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,715 篇 工学
    • 1,623 篇 计算机科学与技术...
    • 182 篇 软件工程
    • 142 篇 机械工程
    • 133 篇 光学工程
    • 41 篇 生物工程
    • 29 篇 信息与通信工程
    • 18 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 控制科学与工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 173 篇 理学
    • 135 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 2 篇 大气科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 2,867 篇 computer vision
  • 1,227 篇 training
  • 1,038 篇 pattern recognit...
  • 870 篇 computational mo...
  • 794 篇 conferences
  • 693 篇 visualization
  • 593 篇 three-dimensiona...
  • 469 篇 codes
  • 460 篇 benchmark testin...
  • 422 篇 semantics
  • 420 篇 computer archite...
  • 349 篇 accuracy
  • 301 篇 adaptation model...
  • 282 篇 feature extracti...
  • 267 篇 transformers
  • 242 篇 cameras
  • 225 篇 diffusion models
  • 223 篇 solid modeling
  • 214 篇 pipelines
  • 210 篇 measurement

机构

  • 72 篇 tsinghua univers...
  • 69 篇 zhejiang univers...
  • 58 篇 university of sc...
  • 57 篇 shanghai jiao to...
  • 52 篇 google research
  • 47 篇 nanyang technolo...
  • 44 篇 national univers...
  • 40 篇 shanghai ai labo...
  • 39 篇 university of ch...
  • 37 篇 adobe research
  • 37 篇 the university o...
  • 37 篇 the chinese univ...
  • 35 篇 stanford univers...
  • 34 篇 harbin institute...
  • 34 篇 shanghai artific...
  • 34 篇 carnegie mellon ...
  • 33 篇 university of el...
  • 30 篇 peng cheng labor...
  • 30 篇 sun yat-sen univ...
  • 29 篇 s-lab nanyang te...

作者

  • 75 篇 timofte radu
  • 24 篇 yu qiao
  • 22 篇 luc van gool
  • 19 篇 ying shan
  • 16 篇 van gool luc
  • 15 篇 radu timofte
  • 14 篇 xin li
  • 13 篇 li xin
  • 12 篇 chen chen
  • 12 篇 zhang zhao
  • 12 篇 boxin shi
  • 11 篇 lizhuang ma
  • 11 篇 fan haoqiang
  • 11 篇 loy chen change
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 kai zhang
  • 11 篇 marcos v. conde
  • 11 篇 chen wei-ting
  • 11 篇 ziwei liu

语言

  • 4,654 篇 英文
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024"
4655 条 记 录,以下是101-110 订阅
排序:
Importance is in your attention: agent importance prediction for autonomous driving
Importance is in your attention: agent importance prediction...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Hazard, Christopher Bhagat, Akshay Buddharaju, Balarama Raju Liu, Zhongtao Shao, Yunming Lu, Lu Omari, Sammy Cui, Henggang Motional Boston MA 02210 USA
Trajectory prediction is an important task in autonomous driving. State-of-the-art trajectory prediction models often use attention mechanisms to model the interaction between agents. In this paper, we show that the a... 详细信息
来源: 评论
QAttn: Efficient GPU Kernels for mixed-precision vision Transformers
QAttn: Efficient GPU Kernels for mixed-precision Vision Tran...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kluska, Piotr Castello, Adrian Scheidegger, Florian Malossi, A. Cristiano I. Quintana-Orti, Enrique S. IBM Res Europe Ruschlikon Switzerland Univ Politecn Valencia Valencia Spain
vision Transformers have demonstrated outstanding performance in computer vision tasks. Nevertheless, this superior performance for large models comes at the expense of increasing memory usage for storing the paramete... 详细信息
来源: 评论
Estimating (and fixing) the Effect of Face Obfuscation in Video recognition
Estimating (and <i>fixing</i>) the Effect of Face Obfuscatio...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Tomei, Matteo Baraldi, Lorenzo Bronzin, Simone Cucchiara, Rita Univ Modena & Reggio Emilia Modena Italy Metaliquid Srl Milan Italy
Recent research has shown that faces can be obfuscated in large-scale datasets with a minimal performance impact on image classification and downstream tasks like object recognition. In this paper, we investigate the ... 详细信息
来源: 评论
Segment Anything Model for Road Network Graph Extraction
Segment Anything Model for Road Network Graph Extraction
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Hetang, Congrui Xue, Haoru Le, Cindy Yue, Tianwei Wang, Wenping He, Yihui Carnegie Mellon Univ Pittsburgh PA 15213 USA Columbia Univ New York NY USA
We propose SAM-Road, an adaptation of the Segment Anything Model (SAM) [27] for extracting large-scale, vectorized road network graphs from satellite imagery. To predict graph geometry, we formulate it as a dense sema... 详细信息
来源: 评论
Live Demonstration: Incremental Motion Estimation for Event-based Cameras by Dispersion Minimisation
Live Demonstration: Incremental Motion Estimation for Event-...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Nunes, Urbano Miguel Demiris, Yiannis Imperial Coll London Personal Robot Lab London England
Live demonstration setup. (Left) The setup consists of a DAVIS346B event camera connected to a standard consumer laptop and undergoes some motion. (Right) The motion estimates are plotted in red and, for rotation-like... 详细信息
来源: 评论
Efficient CNN Architecture for Multi-modal Aerial View Object Classification
Efficient CNN Architecture for Multi-modal Aerial View Objec...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Miron, Casian Pasarica, Alexandru Timofte, Radu Gheorghe Asachi Tech Univ MCC Resources SRL Iasi Romania
The NTIRE 2021 workshop features a Multi-modal Aerial View Object Classification Challenge. Its focus is on multi-sensor imagery classification in order to improve the performance of automatic target recognition (ATR)... 详细信息
来源: 评论
SCVRL: Shuffled Contrastive Video Representation Learning
SCVRL: Shuffled Contrastive Video Representation Learning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Dorkenwald, Michael Xiao, Fanyi Brattoli, Biagio Tighe, Joseph Modolo, Davide Heidelberg Univ Heidelberg Germany AWS AI Labs Palo Alto CA USA AWS Palo Alto CA USA
We propose SCVRL, a novel contrastive-based framework for self-supervised learning for videos. Differently from previous contrast learning based methods that mostly focus on learning visual semantics (e.g., CVRL), SCV... 详细信息
来源: 评论
MDMMT: Multidomain Multimodal Transformer for Video Retrieval
MDMMT: Multidomain Multimodal Transformer for Video Retrieva...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Dzabraev, Maksim Kalashnikov, Maksim Komkov, Stepan Petiushko, Aleksandr Lomonosov Moscow State Univ Moscow Russia Huawei Moscow Res Ctr Moscow Russia
We present a new state-of-the-art on the text-to-video retrieval task on MSRVTT and LSMDC benchmarks where our model outperforms all previous solutions by a large margin. Moreover, state-of-the-art results are achieve... 详细信息
来源: 评论
Event-based spacecraft landing using time-to-contact
Event-based spacecraft landing using time-to-contact
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Sikorski, Olaf Izzo, Dario Meoni, Gabriele European Space Technol Ctr Adv Concepts Team Keplerlaan 1 NL-2201 AZ Noordwijk Netherlands
We study event-based sensors in the context of spacecraft guidance and control during a descent on Moon-like terrains. For this purpose, we develop a simulator reproducing the event-based camera outputs when exposed t... 详细信息
来源: 评论
Content-aware Input Scaling and Deep Learning Computation Offloading for Low-Latency Embedded vision
Content-aware Input Scaling and Deep Learning Computation Of...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Prabhune, Omkar Chen, Tianen Kim, Younghyun Purdue Univ W Lafayette IN 47907 USA Univ Wisconsin Madison WI 53706 USA Google Mountain View CA 94043 USA
Deploying deep learning (DL) models for visual recognition on embedded systems is often constrained by their limited compute power and storage capacity, and has stringent latency and power requirements. As emerging DL... 详细信息
来源: 评论