咨询与建议

限定检索结果

文献类型

  • 4,653 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 4,655 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,715 篇 工学
    • 1,623 篇 计算机科学与技术...
    • 182 篇 软件工程
    • 142 篇 机械工程
    • 133 篇 光学工程
    • 41 篇 生物工程
    • 29 篇 信息与通信工程
    • 18 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 控制科学与工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 173 篇 理学
    • 135 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 2 篇 大气科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 2,867 篇 computer vision
  • 1,227 篇 training
  • 1,038 篇 pattern recognit...
  • 870 篇 computational mo...
  • 794 篇 conferences
  • 693 篇 visualization
  • 593 篇 three-dimensiona...
  • 469 篇 codes
  • 460 篇 benchmark testin...
  • 422 篇 semantics
  • 420 篇 computer archite...
  • 349 篇 accuracy
  • 301 篇 adaptation model...
  • 282 篇 feature extracti...
  • 267 篇 transformers
  • 242 篇 cameras
  • 225 篇 diffusion models
  • 223 篇 solid modeling
  • 214 篇 pipelines
  • 210 篇 measurement

机构

  • 72 篇 tsinghua univers...
  • 69 篇 zhejiang univers...
  • 58 篇 university of sc...
  • 57 篇 shanghai jiao to...
  • 52 篇 google research
  • 47 篇 nanyang technolo...
  • 44 篇 national univers...
  • 40 篇 shanghai ai labo...
  • 39 篇 university of ch...
  • 37 篇 adobe research
  • 37 篇 the university o...
  • 37 篇 the chinese univ...
  • 35 篇 stanford univers...
  • 34 篇 harbin institute...
  • 34 篇 shanghai artific...
  • 34 篇 carnegie mellon ...
  • 33 篇 university of el...
  • 30 篇 peng cheng labor...
  • 30 篇 sun yat-sen univ...
  • 29 篇 s-lab nanyang te...

作者

  • 75 篇 timofte radu
  • 24 篇 yu qiao
  • 22 篇 luc van gool
  • 19 篇 ying shan
  • 16 篇 van gool luc
  • 15 篇 radu timofte
  • 14 篇 xin li
  • 13 篇 li xin
  • 12 篇 chen chen
  • 12 篇 zhang zhao
  • 12 篇 boxin shi
  • 11 篇 lizhuang ma
  • 11 篇 fan haoqiang
  • 11 篇 loy chen change
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 kai zhang
  • 11 篇 marcos v. conde
  • 11 篇 chen wei-ting
  • 11 篇 ziwei liu

语言

  • 4,653 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024"
4655 条 记 录,以下是1101-1110 订阅
排序:
MIPI 2024 Challenge on Nighttime Flare Removal: Methods and Results
MIPI 2024 Challenge on Nighttime Flare Removal: Methods and ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Yuekun Dai Dafeng Zhang Xiaoming Li Zongsheng Yue Chongyi Li Shangchen Zhou Ruicheng Feng Peiqing Yang Zhezhu Jin Guanqun Liu Chen Change Loy S-Lab Nanyang Technological University Samsung Research China Nankai University
The increasing demand for computational photography and imaging on mobile platforms has led to the widespread development and integration of advanced image sensors with novel algorithms in camera systems. However, the... 详细信息
来源: 评论
HirFormer: Dynamic High Resolution Transformer for Large-Scale Image Shadow Removal
HirFormer: Dynamic High Resolution Transformer for Large-Sca...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Xin Lu Yurui Zhu Xi Wang Dong Li Jie Xiao Yunpeng Zhang Xueyang Fu Zheng-Jun Zha University of Science and Technology of China
Existing image restoration models have limited performance in high-resolution image shadow removal tasks, particularly in handling complex background information and unevenly distributed shadows. To address this chall... 详细信息
来源: 评论
Unified Face Attack Detection with Micro Disturbance and a Two-Stage Training Strategy
Unified Face Attack Detection with Micro Disturbance and a T...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Jiaruo Yu Dagong Lu Xingyue Shi Chenfan Qu Fengjun Guo IntSig Information Co. Ltd Shanghai China
Face recognition systems are widely used in real-world scenarios but are susceptible to physical and digital attacks. Effective methods for unified detection of both physical face attacks and digital face attacks are ... 详细信息
来源: 评论
Towards Quantitative Evaluation Metrics for Image Editing Approaches
Towards Quantitative Evaluation Metrics for Image Editing Ap...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Dana Cohen Hochberg Oron Anschel Alon Shoshan Igor Kviatkovsky Manoj Aggarwal Gérard Medioni Amazon
In the rapidly evolving field of Generative AI, this work takes initial steps towards establishing a systematic approach for comparing image editing methods. Currently, there is a lack of quantitative metrics for eval... 详细信息
来源: 评论
NTIRE 2023 Video Colorization Challenge
NTIRE 2023 Video Colorization Challenge
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Kang, Xiaoyang Lin, Xianhui Zhang, Kai Hui, Zheng Xiang, Wangmeng He, Jun-Yan Li, Xiaoming Ren, Peiran Xie, Xuansong Timofte, Radu Pan, Jinshan Peng, Zhongzheng Zhang, Qiyan Dong, Jiangxin Tang, Jinhui Li, Jinjing Lin, Chichen Li, Qipei Liang, Qirong Gang, Ruipeng Liu, Xiaofeng Feng, Shuang Liu, Shuai Wang, Hao Feng, Chaoyu Bai, Furui Zhang, Yuqian Shao, Guangqi Wang, Xiaotao Lei, Lei Chen, Siqi Zhang, Yu Xu, Hanning Liu, Zheyuan Zhang, Zhao Luo, Yan Zuo, Zhichao Damo Academy Alibaba Group China Computer Vision Lab Eth Zürich Switzerland Nanyang Technological University Singapore University of Würzburg Germany Nanjing University of Science and Technology China Communication University of China Beijing100024 China Academy of Broadcasting Science Nrta Beijing100866 China Uhdtv Research and Application Laboratory Beijing100176 China Xiaomi Inc. China School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China Zjut China China
This paper reviews the video colorization challenge on the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2023. The target of this challenge is converting grayscale vid... 详细信息
来源: 评论
Context-aware Video Anomaly Detection in Long-Term Datasets
Context-aware Video Anomaly Detection in Long-Term Datasets
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Zhengye Yang Richard J. Radke Department of ECSE Rensselaer Polytechnic Institute Troy NY USA
Video anomaly detection research is generally evaluated on short, isolated benchmark videos only a few minutes long. However, in real-world environments, security cameras observe the same scene for months or years at ... 详细信息
来源: 评论
NTIRE 2022 Challenge on Night Photography Rendering
NTIRE 2022 Challenge on Night Photography Rendering
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ershov, Egor Savchik, Alex Shepelev, Denis Banic, Nikola Brown, Michael S. Timofte, Radu Koscevic, Karlo Freeman, Michael Tesalin, Vasily Bocharov, Dmitry Semenkov, Illya Subasic, Marko Loncaric, Sven Terekhin, Arseniy Liu, Shuai Feng, Chaoyu Wang, Hao Zhu, Ran Li, Yongqiang Lei, Lei Li, Zhihao Yi, Si Han, Ling-Hao Wu, Ruiqi Jin, Xin Guo, Chunle Kinli, Furkan Mentes, Sami Ozcan, Baris Kirac, Furkan Zini, Simone Rota, Claudio Buzzelli, Marco Bianco, Simone Schettini, Raimondo Li, Wei Ma, Yipeng Wang, Tao Xu, Ruikang Song, Fenglong Chen, Wei-Ting Yang, Hao-Hsiang Huang, Zhi-Kai Chang, Hua-En Kuo, Sy-Yen Liang, Zhexin Zhou, Shangchen Feng, Ruicheng Li, Chongyi Chen, Xiangyu Song, Binbin Zhang, Shile Liu, Lin Wang, Zhendong Ryu, Dohoon Bae, Hyokyoung Kwon, Taesung Desai, Chaitra Akalwadi, Nikhil Joshi, Amogh Mandi, Chinmayee Malagi, Sampada Uppin, Akash Reddy, Sai Sudheer Tabib, Ramesh Ashok Patil, Ujwala Mudenagudi, Uma Kharkevich Inst Inst Informat Transmiss Problems Moscow Russia Gideon Bros Osijek Croatia York Univ Toronto ON Canada Swiss Fed Inst Technol Zurich Zurich Switzerland Univ Wurzburg Wurzburg Germany Univ Zagreb Fac Elect Engn & Comp Zagreb Croatia Michael Freeman Photog London England Xiaomi Inc Beijing Peoples R China Nanjing Univ Nanjing Peoples R China Nankai Univ Tianjin Peoples R China Wuhan Univ Technol Wuhan Peoples R China Ozyegin Univ Istanbul Turkey Univ Milano Bicocca Milan Italy Huawei Noahs Ark Lab Montreal PQ Canada Natl Taiwan Univ Grad Inst Elect Engn New Taipei Taiwan Natl Taiwan Univ Dept Elect Engn New Taipei Taiwan Nanyang Technol Univ Singapore Singapore Univ Macau Taipa Macao Peoples R China Univ Sci & Technol China Hefei Peoples R China Korea Adv Inst Sci & Technol Daejeon South Korea KLE Technol Univ Ctr Excellence Visual Intelligence CEVI Hubballi Karnataka India
This paper reviews the NTIRE 2022 challenge on night photography rendering. The challenge solicited solutions that processed RAW camera images captured in night scenes to produce a photo-finished output image encoded ... 详细信息
来源: 评论
Unveiling the Anomalies in an Ever-Changing World: A Benchmark for Pixel-Level Anomaly Detection in Continual Learning
Unveiling the Anomalies in an Ever-Changing World: A Benchma...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Nikola Bugarin Jovana Bugaric Manuel Barusco Davide Dalle Pezze Gian Antonio Susto University of Padova
Anomaly Detection is a relevant problem in numerous real-world applications, especially when dealing with images. However, little attention has been paid to the issue of changes over time in the input data distributio... 详细信息
来源: 评论
Generative Dataset Distillation: Balancing Global Structure and Local Details
Generative Dataset Distillation: Balancing Global Structure ...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Longzhen Li Guang Li Ren Togo Keisuke Maeda Takahiro Ogawa Miki Haseyama Hokkaido University
In this paper, we propose a new dataset distillation method that considers balancing global structure and local details when distilling the information from a large dataset into a generative model. Dataset distillatio... 详细信息
来源: 评论
Collaborative Blind Image Deblurring
Collaborative Blind Image Deblurring
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (cvprw)
作者: Thomas Eboli Jean-Michel Morel Gabriele Facciolo CNRS ENS Paris-Saclay Centre Borelli Université Paris-Saclay City University of Hong Kong
Blurry images usually exhibit similar blur at various locations across the image domain, a property barely captured in nowadays blind deblurring neural networks. We show that when extracting patches of similar underly... 详细信息
来源: 评论