咨询与建议

限定检索结果

文献类型

  • 4,653 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 4,655 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,715 篇 工学
    • 1,623 篇 计算机科学与技术...
    • 182 篇 软件工程
    • 142 篇 机械工程
    • 133 篇 光学工程
    • 41 篇 生物工程
    • 29 篇 信息与通信工程
    • 18 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 控制科学与工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 173 篇 理学
    • 135 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 2 篇 大气科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 2,867 篇 computer vision
  • 1,227 篇 training
  • 1,038 篇 pattern recognit...
  • 870 篇 computational mo...
  • 794 篇 conferences
  • 693 篇 visualization
  • 593 篇 three-dimensiona...
  • 469 篇 codes
  • 460 篇 benchmark testin...
  • 422 篇 semantics
  • 420 篇 computer archite...
  • 349 篇 accuracy
  • 301 篇 adaptation model...
  • 282 篇 feature extracti...
  • 267 篇 transformers
  • 242 篇 cameras
  • 225 篇 diffusion models
  • 223 篇 solid modeling
  • 214 篇 pipelines
  • 210 篇 measurement

机构

  • 72 篇 tsinghua univers...
  • 69 篇 zhejiang univers...
  • 58 篇 university of sc...
  • 57 篇 shanghai jiao to...
  • 52 篇 google research
  • 47 篇 nanyang technolo...
  • 44 篇 national univers...
  • 40 篇 shanghai ai labo...
  • 39 篇 university of ch...
  • 37 篇 adobe research
  • 37 篇 the university o...
  • 37 篇 the chinese univ...
  • 35 篇 stanford univers...
  • 34 篇 harbin institute...
  • 34 篇 shanghai artific...
  • 34 篇 carnegie mellon ...
  • 33 篇 university of el...
  • 30 篇 peng cheng labor...
  • 30 篇 sun yat-sen univ...
  • 29 篇 s-lab nanyang te...

作者

  • 75 篇 timofte radu
  • 24 篇 yu qiao
  • 22 篇 luc van gool
  • 19 篇 ying shan
  • 16 篇 van gool luc
  • 15 篇 radu timofte
  • 14 篇 xin li
  • 13 篇 li xin
  • 12 篇 chen chen
  • 12 篇 zhang zhao
  • 12 篇 boxin shi
  • 11 篇 lizhuang ma
  • 11 篇 fan haoqiang
  • 11 篇 loy chen change
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 kai zhang
  • 11 篇 marcos v. conde
  • 11 篇 chen wei-ting
  • 11 篇 ziwei liu

语言

  • 4,654 篇 英文
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024"
4655 条 记 录,以下是221-230 订阅
排序:
Contrastive Domain Adaptation
Contrastive Domain Adaptation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Thota, Mamatha Leontidis, Georgios Univ Lincoln Sch Comp Sci Lincoln LN6 7TS England Univ Aberdeen Dept Comp Sci Aberdeen AB24 3UE Scotland
Recently, contrastive self-supervised learning has become a key component for learning visual representations across many computer vision tasks and benchmarks. However, contrastive learning in the context of domain ad... 详细信息
来源: 评论
Application of computer vision and vector space model for tactical movement classification in badminton  30
Application of computer vision and vector space model for ta...
收藏 引用
30th ieee/cvf conference on computer vision and pattern recognition workshops (cvprw)
作者: Weeratunga, Kokum Dharmaratne, Anuja How, Khoo Boon Monash Univ Sch Informat Technol Clayton Vic Australia Monash Univ Sch Engn Clayton Vic Australia Natl Sports Inst Malaysia Kuala Lumpur Malaysia
Performance profiling in sports allow evaluating opponents' tactics and the development of counter tactics to gain a competitive advantage. The work presented develops a comprehensive methodology to automate tacti... 详细信息
来源: 评论
Shadow-Mapping for Unsupervised Neural Causal Discovery
Shadow-Mapping for Unsupervised Neural Causal Discovery
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Vowels, Matthew J. Camgoz, Necati Cihan Bowden, Richard Univ Surrey Ctr Vis Speech & Signal Proc Guildford Surrey England
An important goal across most scientific fields is the discovery of causal structures underling a set of observations. Unfortunately, causal discovery methods which are based on correlation or mutual information can o... 详细信息
来源: 评论
ObjectGraphs: Using Objects and a Graph Convolutional Network for the Bottom-up recognition and Explanation of Events in Video
ObjectGraphs: Using Objects and a Graph Convolutional Networ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Gkalelis, Nikolaos Goulas, Andreas Galanopoulos, Damianos Mezaris, Vasileios CERTH ITI 6th Km Charilaou Thermi RdPOB 60361 Thessaloniki Greece
In this paper a novel bottom-up video event recognition approach is proposed, ObjectGraphs, which utilizes a rich frame representation and the relations between objects within each frame. Following the application of ... 详细信息
来源: 评论
Dot Distance for Tiny Object Detection in Aerial Images
Dot Distance for Tiny Object Detection in Aerial Images
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Xu, Chang Wang, Jinwang Yang, Wen Yu, Lei Wuhan Univ Sch Elect Informat Wuhan Peoples R China
Object detection has achieved great progress with the development of anchor-based and anchor-free detectors. However, the detection of tiny objects is still challenging due to the lack of appearance information. In th... 详细信息
来源: 评论
OutfitTransformer: Outfit Representations for Fashion Recommendation
OutfitTransformer: Outfit Representations for Fashion Recomm...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Sarkar, Rohan Bodla, Navaneeth Vasileva, Mariya Lin, Yen-Liang Beniwal, Anurag Lu, Alan Medioni, Gerard Purdue Univ W Lafayette IN 47907 USA Amazon Seattle WA 98109 USA
Predicting outfit compatibility and retrieving complementary items are critical components for a fashion recommendation system. We present a scalable framework, Out-fitTransformer, that learns compatibility of the ent... 详细信息
来源: 评论
Modeling Fashion Compatibility with Explanation by using Bidirectional LSTM
Modeling Fashion Compatibility with Explanation by using Bid...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Pang Kaicheng Zou Xingxing Wong, Wai Keung Hong Kong Polytech Univ Inst Text & Clothing Hong Kong Peoples R China Lab Artificial Intelligence Design Hong Kong Peoples R China
The goal of this paper is to model the fashion compatibility of an outfit and provide the explanations. We first extract features of all attributes of all items via convolutional neural networks, and then train the bi... 详细信息
来源: 评论
Private-Shared Disentangled Multimodal VAE for Learning of Latent Representations
Private-Shared Disentangled Multimodal VAE for Learning of L...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Lee, Mihee Pavlovic, Vladimir Rutgers State Univ Piscataway NJ 08854 USA
Multi-modal generative models represent an important family of deep models, whose goal is to facilitate representation learning on data with multiple views or modalities. However, current deep multi-modal models focus... 详细信息
来源: 评论
AAFormer: A Multi-Modal Transformer Network for Aerial Agricultural Images
AAFormer: A Multi-Modal Transformer Network for Aerial Agric...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Shen, Yao Wang, Lei Jin, Yue China Pacific Insurance Grp Co Ltd Shanghai Peoples R China East China Normal Univ Shanghai Peoples R China
The semantic segmentation of agricultural aerial images is very important for the recognition and analysis of farmland anomaly patterns, such as drydown, endrow, nutrient deficiency, etc. Methods for general semantic ... 详细信息
来源: 评论
End-to-end Optimized Video Compression with MV-Residual Prediction
End-to-end Optimized Video Compression with MV-Residual Pred...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wu, XiangJi Zhang, Ziwen Feng, Jie Zhou, Lei Wu, Junmin Tucodec Inc Shanghai Peoples R China
We present an end-to-end trainable framework for P-frame compression in this paper. A joint motion vector (MV) and residual prediction network MV-Residual is designed to extract the ensembled features of motion repres... 详细信息
来源: 评论