咨询与建议

限定检索结果

文献类型

  • 4,653 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 4,655 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,715 篇 工学
    • 1,623 篇 计算机科学与技术...
    • 182 篇 软件工程
    • 142 篇 机械工程
    • 133 篇 光学工程
    • 41 篇 生物工程
    • 29 篇 信息与通信工程
    • 18 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 控制科学与工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 173 篇 理学
    • 135 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 2 篇 大气科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 2,867 篇 computer vision
  • 1,227 篇 training
  • 1,038 篇 pattern recognit...
  • 870 篇 computational mo...
  • 794 篇 conferences
  • 693 篇 visualization
  • 593 篇 three-dimensiona...
  • 469 篇 codes
  • 460 篇 benchmark testin...
  • 422 篇 semantics
  • 420 篇 computer archite...
  • 349 篇 accuracy
  • 301 篇 adaptation model...
  • 282 篇 feature extracti...
  • 267 篇 transformers
  • 242 篇 cameras
  • 225 篇 diffusion models
  • 223 篇 solid modeling
  • 214 篇 pipelines
  • 210 篇 measurement

机构

  • 72 篇 tsinghua univers...
  • 69 篇 zhejiang univers...
  • 58 篇 university of sc...
  • 57 篇 shanghai jiao to...
  • 52 篇 google research
  • 47 篇 nanyang technolo...
  • 44 篇 national univers...
  • 40 篇 shanghai ai labo...
  • 39 篇 university of ch...
  • 37 篇 adobe research
  • 37 篇 the university o...
  • 37 篇 the chinese univ...
  • 35 篇 stanford univers...
  • 34 篇 harbin institute...
  • 34 篇 shanghai artific...
  • 34 篇 carnegie mellon ...
  • 33 篇 university of el...
  • 30 篇 peng cheng labor...
  • 30 篇 sun yat-sen univ...
  • 29 篇 s-lab nanyang te...

作者

  • 75 篇 timofte radu
  • 24 篇 yu qiao
  • 22 篇 luc van gool
  • 19 篇 ying shan
  • 16 篇 van gool luc
  • 15 篇 radu timofte
  • 14 篇 xin li
  • 13 篇 li xin
  • 12 篇 chen chen
  • 12 篇 zhang zhao
  • 12 篇 boxin shi
  • 11 篇 lizhuang ma
  • 11 篇 fan haoqiang
  • 11 篇 loy chen change
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 kai zhang
  • 11 篇 marcos v. conde
  • 11 篇 chen wei-ting
  • 11 篇 ziwei liu

语言

  • 4,654 篇 英文
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024"
4655 条 记 录,以下是301-310 订阅
排序:
Two-stage Network For Single Image Super-Resolution
Two-stage Network For Single Image Super-Resolution
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Han, Yuzhuo Du, Xiaobiao Yang, Zhi Dalian Univ Technol Dalian Peoples R China Jilin Univ Zhuhai Coll Zhuhai Peoples R China Dibaocheng Shanghai Med Imaging Technol Co Ltd Shanghai Peoples R China
The task of single-image super-resolution (SISR) is a highly inverse problem because it is very challenging to reconstruct rich details from blurred images. Most previous super-resolution (SR) methods based on the con... 详细信息
来源: 评论
A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement
A Deeper Look into Aleatoric and Epistemic Uncertainty Disen...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Valdenegro-Toro, Matias Mori, Daniel Saromo Univ Groningen Dept AI Bernoulli Inst Groningen Netherlands Pontifical Catholic Univ Peru Artificial Intelligence Res Grp San Miguel Peru
Neural networks are ubiquitous in many tasks, but trusting their predictions is an open issue. Uncertainty quantification is required for many applications, and disentangled aleatoric and epistemic uncertainties are b... 详细信息
来源: 评论
DeepRing: Protecting Deep Neural Network with Blockchain  32
DeepRing: Protecting Deep Neural Network with Blockchain
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Goel, Akhil Agarwal, Akshay Vatsa, Mayank Singh, Richa Ratha, Nalini IIIT Delhi Delhi NY 13753 USA IBM Res Ossining NY USA
Several computer vision applications such as object detection and face recognition have started to completely rely on deep learning based architectures. These architectures, when paired with appropriate loss functions... 详细信息
来源: 评论
Multi-Task Multi-Modal Self-Supervised Learning for Facial Expression recognition
Multi-Task Multi-Modal Self-Supervised Learning for Facial E...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Halawa, Marah Blume, Florian Bideau, Pia Maier, Martin Rahman, Rasha Abdel Hellwich, Olaf Tech Univ Berlin Berlin Germany Univ Grenoble Alpes Grenoble INP CNRS INRIALJK Grenoble France Humboldt Univ Berlin Germany Res Cluster Excellence Sci Intelligence Berlin Germany
Human communication is multi-modal;e.g., face-to-face interaction involves auditory signals (speech) and visual signals (face movements and hand gestures). Hence, it is essential to exploit multiple modalities when de... 详细信息
来源: 评论
Take the Scenic Route: Improving Generalization in vision-and-Language Navigation
Take the Scenic Route: Improving Generalization in Vision-an...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yu, Felix Deng, Zhiwei Narasimhan, Karthik Russakovsky, Olga Princeton Univ Princeton NJ 08544 USA
In the vision-and-Language Navigation (VLN) task, an agent with egocentric vision navigates to a destination given natural language instructions. The act of manually annotating these instructions is timely and expensi... 详细信息
来源: 评论
A Simple Baseline for Fast and Accurate Depth Estimation on Mobile Devices
A Simple Baseline for Fast and Accurate Depth Estimation on ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Ziyu Wang, Yicheng Huang, Zilong Luo, Guozhong Yu, Gang Fu, Bin Tencent GY Lab Shenzhen Peoples R China
In this paper, we propose a simple but effective encoder-decoder based network for fast and accurate depth estimation on mobile devices. Unlike other depth estimation methods using heavy context modeling modules, the ... 详细信息
来源: 评论
Improving Multi-Target Multi-Camera Tracking by Track Refinement and Completion
Improving Multi-Target Multi-Camera Tracking by Track Refine...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Specker, Andreas Florin, Lucas Cormier, Mickael Beyerer, Juergen Karlsruhe Inst Technol Karlsruhe Germany Fraunhofer IOSB Karlsruhe Germany Fraunhofer Ctr Machine Learning St Augustin Germany
Multi-camera tracking of vehicles on a city-wide level is a core component of modern traffic monitoring systems. For this task, single-camera tracking failures are the most common causes of errors concerning automatic... 详细信息
来源: 评论
recognition of Freely Selected Keypoints on Human Limbs
Recognition of Freely Selected Keypoints on Human Limbs
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ludwig, Katja Kienzle, Daniel Lienhart, Rainer Univ Augsburg Machine Learning & Comp Vis Lab Augsburg Germany
Nearly all Human Pose Estimation (HPE) datasets consist of a fixed set of keypoints. Standard HPE models trained on such datasets can only detect these keypoints. If more points are desired, they have to be manually a... 详细信息
来源: 评论
Simulated Quantization, Real Power Savings
Simulated Quantization, Real Power Savings
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: van Baalen, Mart Kahne, Brian Mahurin, Eric Kuzmin, Andrey Skliar, Andrii Nagel, Markus Blankevoort, Tijmen Qualcomm AI Res San Diego CA 92121 USA
Reduced precision hardware-based matrix multiplication accelerators are commonly employed to reduce power consumption of neural network inference. Multiplier designs used in such accelerators possess an interesting pr... 详细信息
来源: 评论
How to Calibrate Your Event Camera
How to Calibrate Your Event Camera
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Muglikar, Manasi Gehrig, Mathias Gehrig, Daniel Scaramuzza, Davide Univ Zurich Dept Informat Zurich Switzerland Univ Zurich Dept Neuroinformat Zurich Switzerland Swiss Fed Inst Technol Zurich Switzerland
We propose a generic event camera calibration framework using image reconstruction. Instead of relying on blinking LED patterns or external screens, we show that neural-network-based image reconstruction is well suite... 详细信息
来源: 评论