咨询与建议

限定检索结果

文献类型

  • 4,653 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 4,655 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,715 篇 工学
    • 1,623 篇 计算机科学与技术...
    • 182 篇 软件工程
    • 142 篇 机械工程
    • 133 篇 光学工程
    • 41 篇 生物工程
    • 29 篇 信息与通信工程
    • 18 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 控制科学与工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 173 篇 理学
    • 135 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 2 篇 大气科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 2,867 篇 computer vision
  • 1,227 篇 training
  • 1,038 篇 pattern recognit...
  • 870 篇 computational mo...
  • 794 篇 conferences
  • 693 篇 visualization
  • 593 篇 three-dimensiona...
  • 469 篇 codes
  • 460 篇 benchmark testin...
  • 422 篇 semantics
  • 420 篇 computer archite...
  • 349 篇 accuracy
  • 301 篇 adaptation model...
  • 282 篇 feature extracti...
  • 267 篇 transformers
  • 242 篇 cameras
  • 225 篇 diffusion models
  • 223 篇 solid modeling
  • 214 篇 pipelines
  • 210 篇 measurement

机构

  • 72 篇 tsinghua univers...
  • 69 篇 zhejiang univers...
  • 58 篇 university of sc...
  • 57 篇 shanghai jiao to...
  • 52 篇 google research
  • 47 篇 nanyang technolo...
  • 44 篇 national univers...
  • 40 篇 shanghai ai labo...
  • 39 篇 university of ch...
  • 37 篇 adobe research
  • 37 篇 the university o...
  • 37 篇 the chinese univ...
  • 35 篇 stanford univers...
  • 34 篇 harbin institute...
  • 34 篇 shanghai artific...
  • 34 篇 carnegie mellon ...
  • 33 篇 university of el...
  • 30 篇 peng cheng labor...
  • 30 篇 sun yat-sen univ...
  • 29 篇 s-lab nanyang te...

作者

  • 75 篇 timofte radu
  • 24 篇 yu qiao
  • 22 篇 luc van gool
  • 19 篇 ying shan
  • 16 篇 van gool luc
  • 15 篇 radu timofte
  • 14 篇 xin li
  • 13 篇 li xin
  • 12 篇 chen chen
  • 12 篇 zhang zhao
  • 12 篇 boxin shi
  • 11 篇 lizhuang ma
  • 11 篇 fan haoqiang
  • 11 篇 loy chen change
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 kai zhang
  • 11 篇 marcos v. conde
  • 11 篇 chen wei-ting
  • 11 篇 ziwei liu

语言

  • 4,654 篇 英文
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024"
4655 条 记 录,以下是611-620 订阅
排序:
Disentangled Loss for Low-Bit Quantization-Aware Training
Disentangled Loss for Low-Bit Quantization-Aware Training
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Allenet, Thibault Briand, David Bichler, Olivier Sentieys, Olivier CEA LIST Saclay France Univ Rennes INRIA Rennes France
Quantization-Aware Training (QAT) has recently showed a lot of potential for low-bit settings in the context of image classification. Approaches based on QAT are using the Cross Entropy Loss function which is the refe... 详细信息
来源: 评论
DeiT-LT: Distillation Strikes Back for vision Transformer Training on Long-Tailed Datasets
DeiT-LT: Distillation Strikes Back for Vision Transformer Tr...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Rangwani, Harsh Mondal, Pradipto Mishra, Mayank Asokan, Ashish Ramayee Babu, R. Venkatesh Indian Inst Sci Bangalore Karnataka India Indian Inst Technol Kharagpur W Bengal India
vision Transformer (ViT) has emerged as a prominent architecture for various computer vision tasks. In ViT, we divide the input image into patch tokens and process them through a stack of self-attention blocks. Howeve... 详细信息
来源: 评论
Model Level Ensemble for Facial Action Unit recognition at the 3rd ABAW Challenge
Model Level Ensemble for Facial Action Unit Recognition at t...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Jiang, Wenqiang Wu, Yannan Qiao, Fengsheng Meng, Liyu Deng, Yuanyuan Liu, Chuanhe Beijing Seek Truth Data Technol Co Ltd Beijing Peoples R China
In this paper, we present our latest work on Action Unit Detection, which is a part of the Affective Behavior Analysis in-the-wild (ABAW) 2022 Competition [15]. Our proposed network is based on the IResnet100 [6]. Fir... 详细信息
来源: 评论
Multi-Camera Vehicle Tracking System for AI City Challenge 2022
Multi-Camera Vehicle Tracking System for AI City Challenge 2...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Li, Fei Wang, Zhen Nie, Ding Zhang, Shiyi Jiang, Xingqun Zhao, Xingxing Hu, Peng BOE Technol Grp Beijing Peoples R China
Multi-Target Multi-Camera tracking is a fundamental task for intelligent traffic systems. The track 1 of AI City Challenge 2022 aims at the city-scale multi-camera vehicle tracking task. In this paper we propose an ac... 详细信息
来源: 评论
Self-supervised vision Transformers for Land-cover Segmentation and Classification
Self-supervised Vision Transformers for Land-cover Segmentat...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Scheibenreif, Linus Hanna, Joelle Mommert, Michael Borth, Damian Univ St Gallen AIML Lab Sch Comp Sci Rosenbergstr 30 St Gallen Switzerland
Transformer models have recently approached or even surpassed the performance of ConvNets on computer vision tasks like classification and segmentation. To a large degree, these successes have been enabled by the use ... 详细信息
来源: 评论
CarlaScenes: A synthetic dataset for odometry in autonomous driving
CarlaScenes: A synthetic dataset for odometry in autonomous ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kloukiniotis, Andreas Papandreou, Andreas Anagnostopoulos, Christos Lalos, Aris Kapsalas, Petros Nguyen, D-, V Moustakas, Konstantinos Univ Patras Patras Greece ISI Ind Syst Inst Patras Patras Greece Panasonic Automot Langen Germany
Despite the great scientific effort to capture adequately the complex environments in which autonomous vehicles (AVs) operate there are still use-cases that even SoA methods fail to handle. Specifically in odometry pr... 详细信息
来源: 评论
Patch-wise Contrastive Style Learning for Instagram Filter Removal
Patch-wise Contrastive Style Learning for Instagram Filter R...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kinli, Furkan Ozcan, Baris Kirac, Furkan Ozyegin Univ Vis & Graph Lab Video Istanbul Turkey
Image-level corruptions and perturbations degrade the performance of CNNs on different downstream vision tasks. Social media filters are one of the most common resources of various corruptions and perturbations for re... 详细信息
来源: 评论
A Neural-network Enhanced Video Coding Framework beyond VVC
A Neural-network Enhanced Video Coding Framework beyond VVC
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Li, Junru Li, Yue Lin, Chaoyi Zhang, Kai Zhang, Li Bytedance Inc Multimedia Lab San Diego CA 92122 USA
This paper presents a hybrid video compression framework, aiming at providing a demonstration of applying deep learning-based approaches beyond conventional coding framework. The proposed hybrid framework is establish... 详细信息
来源: 评论
Semantically Grounded Visual Embeddings for Zero-Shot Learning
Semantically Grounded Visual Embeddings for Zero-Shot Learni...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Nawaz, Shah Cavazza, Jacopo Del Bue, Alessio Ist Italiano Tecnol IIT Pattern Anal & Comp Vis PAVIS Genoa Italy Ist Italiano Tecnol IIT Visual Geometry & Modelling VGM Genoa Italy Deutsch Elektronen Synchrotron DESY Hamburg Germany
Zero-shot learning methods rely on fixed visual and semantic embeddings, extracted from independent vision and language models, both pre-trained for other large-scale tasks. This is a weakness of current zero-shot lea... 详细信息
来源: 评论
Out-Of-Distribution Detection In Unsupervised Continual Learning
Out-Of-Distribution Detection In Unsupervised Continual Lear...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: He, Jiangpeng Zhu, Fengqing Purdue Univ Elmore Family Sch Elect & Comp Engn W Lafayette IN 47907 USA
Unsupervised continual learning aims to learn new tasks incrementally without requiring human annotations. However, most existing methods, especially those targeted on image classification, only work in a simplified s... 详细信息
来源: 评论