咨询与建议

限定检索结果

文献类型

  • 4,653 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 4,655 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,715 篇 工学
    • 1,623 篇 计算机科学与技术...
    • 182 篇 软件工程
    • 142 篇 机械工程
    • 133 篇 光学工程
    • 41 篇 生物工程
    • 29 篇 信息与通信工程
    • 18 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 控制科学与工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 173 篇 理学
    • 135 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 2 篇 大气科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 2,867 篇 computer vision
  • 1,227 篇 training
  • 1,038 篇 pattern recognit...
  • 870 篇 computational mo...
  • 794 篇 conferences
  • 693 篇 visualization
  • 593 篇 three-dimensiona...
  • 469 篇 codes
  • 460 篇 benchmark testin...
  • 422 篇 semantics
  • 420 篇 computer archite...
  • 349 篇 accuracy
  • 301 篇 adaptation model...
  • 282 篇 feature extracti...
  • 267 篇 transformers
  • 242 篇 cameras
  • 225 篇 diffusion models
  • 223 篇 solid modeling
  • 214 篇 pipelines
  • 210 篇 measurement

机构

  • 72 篇 tsinghua univers...
  • 69 篇 zhejiang univers...
  • 58 篇 university of sc...
  • 57 篇 shanghai jiao to...
  • 52 篇 google research
  • 47 篇 nanyang technolo...
  • 44 篇 national univers...
  • 40 篇 shanghai ai labo...
  • 39 篇 university of ch...
  • 37 篇 adobe research
  • 37 篇 the university o...
  • 37 篇 the chinese univ...
  • 35 篇 stanford univers...
  • 34 篇 harbin institute...
  • 34 篇 shanghai artific...
  • 34 篇 carnegie mellon ...
  • 33 篇 university of el...
  • 30 篇 peng cheng labor...
  • 30 篇 sun yat-sen univ...
  • 29 篇 s-lab nanyang te...

作者

  • 75 篇 timofte radu
  • 24 篇 yu qiao
  • 22 篇 luc van gool
  • 19 篇 ying shan
  • 16 篇 van gool luc
  • 15 篇 radu timofte
  • 14 篇 xin li
  • 13 篇 li xin
  • 12 篇 chen chen
  • 12 篇 zhang zhao
  • 12 篇 boxin shi
  • 11 篇 lizhuang ma
  • 11 篇 fan haoqiang
  • 11 篇 loy chen change
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 kai zhang
  • 11 篇 marcos v. conde
  • 11 篇 chen wei-ting
  • 11 篇 ziwei liu

语言

  • 4,654 篇 英文
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024"
4655 条 记 录,以下是721-730 订阅
排序:
M2DAR: Multi-View Multi-Scale Driver Action recognition with vision Transformer
M2DAR: Multi-View Multi-Scale Driver Action Recognition with...
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Ma, Yunsheng Yuan, Liangqi Abdelraouf, Amr Han, Kyungtae Gupta, Rohit Li, Zihao Wang, Ziran Purdue University College of Engineering United States Toyota Motor North America InfoTech Labs United States
Ensuring traffic safety and preventing accidents is a critical goal in daily driving, where the advancement of computer vision technologies can be leveraged to achieve this goal. In this paper, we present a multi-view... 详细信息
来源: 评论
OPERA: Alleviating Hallucination in Multi-Modal Large Language Models via Over-Trust Penalty and Retrospection-Allocation
OPERA: Alleviating Hallucination in Multi-Modal Large Langua...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Hu, Qidong Dong, Xiaoyi Zhang, Pan Wang, Bin He, Conghui Wang, Jiaqi Lin, Dahua Zhang, Weiming Yu, Nenghai Univ Sci & Technol China Anhui Prov Key Lab Digital Secur Hefei Peoples R China Shanghai AI Lab Shanghai Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
Hallucination, posed as a pervasive challenge of multi-modal large language models (MLLMs), has significantly impeded their real-world usage that demands precise judgment. Existing methods mitigate this issue with eit... 详细信息
来源: 评论
Efficient Conditional Pre-training for Transfer Learning
Efficient Conditional Pre-training for Transfer Learning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chakraborty, Shuvam Uzkent, Burak Ayush, Kumar Tanmay, Kumar Sheehan, Evan Ermon, Stefano Stanford Univ Stanford CA 94305 USA IIT Kharagpur Kharagpur W Bengal India
Almost all the state-of-the-art neural networks for computer vision tasks are trained by (1) pre-training on a large-scale dataset and (2) finetuning on the target dataset. This strategy helps reduce dependence on the... 详细信息
来源: 评论
Visual Programming for Zero-shot Open-Vocabulary 3D Visual Grounding
Visual Programming for Zero-shot Open-Vocabulary 3D Visual G...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yuan, Zhihao Ren, Jinke Feng, Chun-Mei Zhao, Hengshuang Cui, Shuguang Li, Zhen CUHKSZ FNii Shenzhen Peoples R China CUHKSZ SSE Shenzhen Peoples R China ASTAR IHPC Singapore Singapore HKU Hong Kong Peoples R China
3D Visual Grounding (3DVG) aims at localizing 3D object based on textual descriptions. Conventional supervised methods for 3DVG often necessitate extensive annotations and a predefined vocabulary, which can be restric... 详细信息
来源: 评论
Is Multimodal vision Supervision Beneficial to Language?
Is Multimodal Vision Supervision Beneficial to Language?
收藏 引用
2023 ieee/cvf conference on computer vision and pattern recognition workshops, cvprw 2023
作者: Madasu, Avinash Lal, Vasudev Unc Chapel Hill Department of Computer Science United States Cognitive Computing Research Intel Labs United States
vision (image & video) - Language (VL) pre-training is the recent popular paradigm that achieved state-of-the-art results on multi-modal tasks like image-retrieval, video-retrieval, visual question answering etc. ... 详细信息
来源: 评论
Unsupervised Anomaly Detection from Time-of-Flight Depth Images
Unsupervised Anomaly Detection from Time-of-Flight Depth Ima...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Schneider, Pascal Rambach, Jason Mirbach, Bruno Stricker, Didier German Res Ctr Artificial Intelligence DFKI Trippstadter Str 122 D-67663 Kaiserslautern Germany
Video anomaly detection (VAD) addresses the problem of automatically finding anomalous events in video data. The primary data modalities on which current VAD systems work on are monochrome or RGB images. Using depth d... 详细信息
来源: 评论
Cross Transferring Activity recognition to Word Level Sign Language Detection
Cross Transferring Activity Recognition to Word Level Sign L...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Radhakrishnan, Srijith Mohan, Nikhil C. Varma, Manisimha Varma, Jaithra Pai, Smitha N. Manipal Acad Higher Educ Manipal Inst Technol Dept Informat & Commun Technol Manipal 576104 Karnataka India Manipal Acad Higher Educ Manipal Inst Technol Dept Comp Sci & Engn Manipal 576104 Karnataka India Manipal Acad Higher Educ Manipal Inst Technol Dept Data Sci & Comp Applicat Manipal 576104 Karnataka India
The lack of large scale labelled datasets in word-level sign language recognition (WSLR) poses a challenge to detecting sign language from videos. Most WSLR approaches operate on datasets that do not model real-world ... 详细信息
来源: 评论
Motion Aware Double Attention Network for Dynamic Scene Deblurring
Motion Aware Double Attention Network for Dynamic Scene Debl...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yang, Dan Yamac, Mehmet Huawei Technol Oy Finland Co Ltd Helsinki Finland
Motion deblurring in dynamic scenes is a challenging task when the blurring is caused by one or a combination of various reasons such as moving objects, camera movement, etc. Since event cameras can detect changes in ... 详细信息
来源: 评论
Visual Domain Bridge: A source-free domain adaptation for cross-domain few-shot learning
Visual Domain Bridge: A source-free domain adaptation for cr...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yazdanpanah, Moslem Moradi, Parham Univ Kurdistan Erbil Iraq
Due to the covariate shift, deep neural networks performance always degrades when applied to novel domains. In order to mitigate this problem, domain adaptation techniques require samples from target data during the f... 详细信息
来源: 评论
Network Amplification with Efficient MACs Allocation
Network Amplification with Efficient MACs Allocation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Liu, Chuanjian Han, Kai Xiao, An Nie, Ying Zhang, Wei Wang, Yunhe Huawei Noahs Ark Lab Montreal PQ Canada
Recent studies on deep convolutional neural networks present a simple paradigm of architecture design, i.e., models with more MACs typically achieve better accuracies, such as EfficientNet and RegNet. These works try ... 详细信息
来源: 评论