咨询与建议

限定检索结果

文献类型

  • 4,653 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 4,655 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,715 篇 工学
    • 1,623 篇 计算机科学与技术...
    • 182 篇 软件工程
    • 142 篇 机械工程
    • 133 篇 光学工程
    • 41 篇 生物工程
    • 29 篇 信息与通信工程
    • 18 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 9 篇 化学工程与技术
    • 9 篇 交通运输工程
    • 8 篇 控制科学与工程
    • 8 篇 生物医学工程(可授...
    • 7 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 农业工程
  • 173 篇 理学
    • 135 篇 物理学
    • 42 篇 生物学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 化学
    • 2 篇 大气科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
  • 5 篇 法学
    • 3 篇 社会学
    • 2 篇 法学
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 2,867 篇 computer vision
  • 1,227 篇 training
  • 1,038 篇 pattern recognit...
  • 870 篇 computational mo...
  • 794 篇 conferences
  • 693 篇 visualization
  • 593 篇 three-dimensiona...
  • 469 篇 codes
  • 460 篇 benchmark testin...
  • 422 篇 semantics
  • 420 篇 computer archite...
  • 349 篇 accuracy
  • 301 篇 adaptation model...
  • 282 篇 feature extracti...
  • 267 篇 transformers
  • 242 篇 cameras
  • 225 篇 diffusion models
  • 223 篇 solid modeling
  • 214 篇 pipelines
  • 210 篇 measurement

机构

  • 72 篇 tsinghua univers...
  • 69 篇 zhejiang univers...
  • 58 篇 university of sc...
  • 57 篇 shanghai jiao to...
  • 52 篇 google research
  • 47 篇 nanyang technolo...
  • 44 篇 national univers...
  • 40 篇 shanghai ai labo...
  • 39 篇 university of ch...
  • 37 篇 adobe research
  • 37 篇 the university o...
  • 37 篇 the chinese univ...
  • 35 篇 stanford univers...
  • 34 篇 harbin institute...
  • 34 篇 shanghai artific...
  • 34 篇 carnegie mellon ...
  • 33 篇 university of el...
  • 30 篇 peng cheng labor...
  • 30 篇 sun yat-sen univ...
  • 29 篇 s-lab nanyang te...

作者

  • 75 篇 timofte radu
  • 24 篇 yu qiao
  • 22 篇 luc van gool
  • 19 篇 ying shan
  • 16 篇 van gool luc
  • 15 篇 radu timofte
  • 14 篇 xin li
  • 13 篇 li xin
  • 12 篇 chen chen
  • 12 篇 zhang zhao
  • 12 篇 boxin shi
  • 11 篇 lizhuang ma
  • 11 篇 fan haoqiang
  • 11 篇 loy chen change
  • 11 篇 zheng-jun zha
  • 11 篇 liu shuaicheng
  • 11 篇 kai zhang
  • 11 篇 marcos v. conde
  • 11 篇 chen wei-ting
  • 11 篇 ziwei liu

语言

  • 4,654 篇 英文
  • 1 篇 中文
检索条件"任意字段=2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024"
4655 条 记 录,以下是71-80 订阅
排序:
NTIRE 2024 Challenge on Stereo Image Super-Resolution: Methods and Results
NTIRE 2024 Challenge on Stereo Image Super-Resolution: Metho...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wang, Longguang Guo, Yulan Li, Juncheng Liu, Hongda Zhao, Yang Wang, Yingqian Jin, Zhi Gu, Shuhang Timofte, Radu Aviation University of Air Force Sun Yat-sen University The Shenzhen Campus of Sun Yat-sen University China National University of Defense Technology China Shanghai University China University of Electronic Science and Technology of China China Computer Vision Lab University of Würzburg Germany
This paper summarizes the 3rd NTIRE challenge on stereo image super-resolution (SR) with a focus on new solutions and results. The task of this challenge is to super-resolve a low-resolution stereo image pair to a hig... 详细信息
来源: 评论
Delta Sampling R-BERT for limited data and low-light action recognition
Delta Sampling R-BERT for limited data and low-light action ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Hira, Sanchit Das, Ritwik Modi, Abhinav Pakhomov, Daniil Johns Hopkins Univ Baltimore MD 21218 USA
We present an approach to perform supervised action recognition in the dark. In this work, we present our results on the ARID dataset[60]. Most previous works only evaluate performance on large, well illuminated datas... 详细信息
来源: 评论
Towards Engineered Safe AI with Modular Concept Models
Towards Engineered Safe AI with Modular Concept Models
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Heidemann, Lena Kurzidem, Iwo Monnet, Maureen Roscher, Karsten Guennemann, Stephan Fraunhofer IKS Munich Germany Tech Univ Munich Munich Germany
The inherent complexity and uncertainty of Machine Learning (ML) makes it difficult for ML-based computer vision (CV) approaches to become prevalent in safety-critical domains like autonomous driving, despite their hi... 详细信息
来源: 评论
VLM-PL: Advanced Pseudo Labeling approach for Class Incremental Object Detection via vision-Language Model
VLM-PL: Advanced Pseudo Labeling approach for Class Incremen...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kim, Junsu Ku, Yunhoe Kim, Jihyeon Cha, Junuk Baek, Seungryul UNIST Ulsan South Korea MODULABS Seoul South Korea
In the field of Class Incremental Object Detection (CIOD), creating models that can continuously learn like humans is a major challenge. Pseudo-labeling methods, although initially powerful, struggle with multi-scenar... 详细信息
来源: 评论
DVMSR: Distillated vision Mamba for Efficient Super-Resolution
DVMSR: Distillated Vision Mamba for Efficient Super-Resoluti...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Lei, Xiaoyan Zhang, Wenlong Cao, Weifeng Zhengzhou Univ Light Ind Zhengzhou Peoples R China HongKong Polytech Univ Hong Kong Peoples R China
Efficient Image Super-Resolution (SR) aims to accelerate SR network inference by minimizing computational complexity and network parameters while preserving performance. Existing state-of-the-art Efficient Image Super... 详细信息
来源: 评论
A Comprehensive Analysis of Factors Impacting Membership Inference
A Comprehensive Analysis of Factors Impacting Membership Inf...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: DeAlcala, Daniel Mancera, Gonzalo Morales, Aythami Fierrez, Julian Tolosana, Ruben Ortega-Garcia, Javier Univ Autonoma Madrid Biometr & Data Pattern Analyt Lab Madrid Spain
We analyze various factors affecting the proper functioning of MIA and MINT, two research lines aimed at detecting data used for training. The difference between these lines lies in the environmental conditions, while... 详细信息
来源: 评论
Multi-Class Multi-Movement Vehicle Counting Based on CenterTrack
Multi-Class Multi-Movement Vehicle Counting Based on CenterT...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kocur, Viktor Ftacnik, Milan Comenius Univ Fac Math Phys & Informat Bratislava Slovakia
In this paper we present our approach to the Track 1 of the 2021 AI City Challenge. The goal of the challenge track is to to analyse footage captured with traffic cameras by counting the number of vehicles performing ... 详细信息
来源: 评论
Thermal Image Super-Resolution Challenge Results - PBVS 2024
Thermal Image Super-Resolution Challenge Results - PBVS 2024
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Rivadeneira, Rafael E. Sappa, Angel D. Wang, Chenyang Jiang, Junjun Zhong, Zhiwei Chen, Peilin Wang, Shiqi Escuela Super Politecn Litoral ESPOL Guayaquil Ecuador Comp Vis Ctr Campus UAB Barcelona 08193 Spain
This paper outlines the advancements and results of the Fifth Thermal Image Super-Resolution challenge, hosted at the Perception Beyond the Visible Spectrum CVPR 2024 workshop. The challenge employed a novel benchmark... 详细信息
来源: 评论
NTIRE 2021 Challenge on Quality Enhancement of Compressed Video: Dataset and Study
NTIRE 2021 Challenge on Quality Enhancement of Compressed Vi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yang, Ren Timofte, Radu Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland
This paper introduces a novel dataset for video enhancement and studies the state-of-the-art methods of the NTIRE 2021 challenge on quality enhancement of compressed video. The challenge is the first NTIRE challenge i... 详细信息
来源: 评论
Privacy Leakage of Adversarial Training Models in Federated Learning Systems
Privacy Leakage of Adversarial Training Models in Federated ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Jingyang Chen, Yiran Li, Hai Duke Univ Dept Elect & Comp Engn Durham NC 27706 USA
Adversarial Training (AT) is crucial for obtaining deep neural networks that are robust to adversarial attacks, yet recent works found that it could also make models more vulnerable to privacy attacks. In this work, w... 详细信息
来源: 评论