咨询与建议

限定检索结果

文献类型

  • 14,280 篇 会议
  • 35 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 14,316 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9,772 篇 工学
    • 8,845 篇 计算机科学与技术...
    • 7,607 篇 软件工程
    • 1,759 篇 信息与通信工程
    • 1,397 篇 控制科学与工程
    • 1,045 篇 电气工程
    • 888 篇 生物医学工程(可授...
    • 812 篇 生物工程
    • 653 篇 安全科学与工程
    • 636 篇 网络空间安全
    • 527 篇 电子科学与技术(可...
    • 527 篇 交通运输工程
    • 520 篇 光学工程
    • 454 篇 机械工程
    • 391 篇 仪器科学与技术
    • 379 篇 动力工程及工程热...
  • 3,597 篇 理学
    • 1,963 篇 数学
    • 1,070 篇 统计学(可授理学、...
    • 994 篇 生物学
    • 584 篇 系统科学
    • 579 篇 物理学
  • 2,671 篇 管理学
    • 1,936 篇 管理科学与工程(可...
    • 1,062 篇 图书情报与档案管...
    • 1,032 篇 工商管理
  • 1,291 篇 医学
    • 1,078 篇 临床医学
    • 1,024 篇 基础医学(可授医学...
    • 893 篇 公共卫生与预防医...
    • 380 篇 药学(可授医学、理...
  • 599 篇 法学
    • 543 篇 社会学
  • 503 篇 经济学
    • 502 篇 应用经济学
  • 361 篇 农学
    • 359 篇 作物学
  • 265 篇 教育学
  • 133 篇 文学
  • 12 篇 军事学

主题

  • 2,052 篇 machine learning
  • 1,447 篇 accuracy
  • 1,437 篇 adversarial mach...
  • 954 篇 predictive model...
  • 842 篇 deep learning
  • 835 篇 data models
  • 727 篇 machine learning...
  • 627 篇 training
  • 593 篇 support vector m...
  • 490 篇 computational mo...
  • 448 篇 convolutional ne...
  • 435 篇 feature extracti...
  • 424 篇 real-time system...
  • 360 篇 federated learni...
  • 312 篇 random forests
  • 301 篇 analytical model...
  • 298 篇 contrastive lear...
  • 240 篇 prediction algor...
  • 233 篇 prediction model...
  • 221 篇 medical services

机构

  • 187 篇 chitkara univers...
  • 82 篇 lovely professio...
  • 45 篇 graphic era deem...
  • 42 篇 the islamic univ...
  • 37 篇 graphic era hill...
  • 37 篇 the islamic univ...
  • 33 篇 pune
  • 32 篇 graphic era deem...
  • 29 篇 chitkara centre ...
  • 28 篇 school of comput...
  • 27 篇 chitkara univers...
  • 26 篇 school of comput...
  • 26 篇 school of comput...
  • 26 篇 school of comput...
  • 25 篇 computer science...
  • 24 篇 computer science...
  • 24 篇 centre of resear...
  • 24 篇 computer science...
  • 23 篇 college of techn...
  • 23 篇 computer science...

作者

  • 46 篇 kukreja vinay
  • 42 篇 gill kanwarparta...
  • 21 篇 vats satvik
  • 20 篇 upadhyay deepak
  • 19 篇 pareek piyush ku...
  • 18 篇 chauhan rahul
  • 15 篇 ranganathan chit...
  • 15 篇 surendran r.
  • 14 篇 maranan ramya
  • 14 篇 singh jagendra
  • 14 篇 devliyal swati
  • 14 篇 natrayan l.
  • 14 篇 murugan s.
  • 14 篇 deepak upadhyay
  • 13 篇 sharma vikrant
  • 13 篇 nagpal amandeep
  • 13 篇 rishabh sharma
  • 13 篇 elrashidi ali
  • 13 篇 venugopalan manj...
  • 12 篇 kumar amit

语言

  • 12,652 篇 英文
  • 1,657 篇 其他
  • 69 篇 中文
  • 4 篇 土耳其文
  • 1 篇 西班牙文
检索条件"任意字段=2024 IEEE International Conference on Future Machine Learning and Data Science, FMLDS 2024"
14316 条 记 录,以下是1-10 订阅
排序:
Proceedings - 2024 ieee international conference on future machine learning and data science, fmlds 2024
Proceedings - 2024 IEEE International Conference on Future M...
收藏 引用
2024 ieee international conference on future machine learning and data science, fmlds 2024
The proceedings contain 94 papers. The topics discussed include: bioacoustic data augmentation techniques for data-driven apiculture;early screening of breast cancer using machine learning algorithms: a comparative st...
来源: 评论
General Population Projection Models with Census data
General Population Projection Models with Census Data
收藏 引用
2024 ieee international conference on future machine learning and data science, fmlds 2024
作者: Tsuruga, Takenori Qiao, Haiyan School of Computer Science and Engineering California State University San Bernardino San Bernardino United States
This paper applies machine learning methods to generate effective population projections using the American Community Survey (ACS) 5-Year Estimate data. To quantify the error margin in the population projection for ea... 详细信息
来源: 评论
Foundation Models in Medical Image Analysis: Overview and Prospects
Foundation Models in Medical Image Analysis: Overview and Pr...
收藏 引用
2024 ieee international conference on future machine learning and data science, fmlds 2024
作者: Rashed, Essam A. Bekhit, Mahmoud Graduate School of Information Science University of Hyogo Kobe650-0047 Japan Peter Faber Business School Australian Catholic University North Sydney Australia
Foundation models have emerged as remarkable tools in medical image analysis leading to a new era of smart healthcare and offering sophisticated capabilities to enhance diagnostic accuracy, treatment planning, and pat... 详细信息
来源: 评论
Deep learning for Early Lung Cancer Detection from CT Scans: A data science Bowl Approach
Deep Learning for Early Lung Cancer Detection from CT Scans:...
收藏 引用
2024 ieee international conference on future machine learning and data science, fmlds 2024
作者: Katta, Krishnaveni Cullen College of Engineering University of Houston Houston United States
Lung cancer remains a significant global health challenge, with early detection being crucial for improving patient outcomes. This paper presents the development of computer-aided diagnosis classification algorithms t... 详细信息
来源: 评论
Differential Diagnosis of Prostate Volume Images by Transfer learning.
Differential Diagnosis of Prostate Volume Images by Transfer...
收藏 引用
2024 ieee international conference on future machine learning and data science, fmlds 2024
作者: Ansari, Saba Riley, Peter Deakin University Dept. Medical Imaging Geelong Australia
It is difficult to differentiate Prostate Cancer from Prostate Hyperplasia in medical images. We assess the utility of deep learning techniques applied to Magnetic Resonance Diffusion images to improve diagnosis. We i... 详细信息
来源: 评论
A Survey on Stochastic Modeling and machine learning Techniques for Optimizing Internet of Medical Things (IoMT) Systems
A Survey on Stochastic Modeling and Machine Learning Techniq...
收藏 引用
2024 ieee international conference on future machine learning and data science, fmlds 2024
作者: Victor, Alexander Okhuese Ali, Muhammad Intizar Dublin City University Sfi Centre for Research Training in Machine Learning Dublin Ireland School of Electronic Engineering Dublin City University Dublin Ireland
The Internet of Medical Things (IoMT) has the potential to transform healthcare, but faces challenges like energy consumption, data scheduling, latency, privacy, joint offloading, limited data, and security. To addres... 详细信息
来源: 评论
Privacy-Preserving Federated Incremental learning for Spatial Crowdsourcing: A Survey of Challenges and Methods
Privacy-Preserving Federated Incremental Learning for Spatia...
收藏 引用
2024 ieee international conference on future machine learning and data science, fmlds 2024
作者: Rahman, Md Mujibur Mamun, Quazi School of Computing Mathematics and Engineering Charles Sturt University NSW Australia
Spatial Crowdsourcing (SC) is an emerging crowdsourcing paradigm that allocates tasks based on real-time user locations to perform spatiotemporal relevant tasks. However, relying on continuously updated location and p... 详细信息
来源: 评论
Bioacoustic data Augmentation Techniques for data-Driven Apiculture
Bioacoustic Data Augmentation Techniques for Data-Driven Api...
收藏 引用
2024 ieee international conference on future machine learning and data science, fmlds 2024
作者: Dangwal, Kartikeye Ardekani, Iman Varastehpour, Soheil Sarrafzadeh, Abdolhossein Unitec Institute of Technology Deptartment of Computing and It Auckland New Zealand Creo Center of Excellence North Carolina a&t State University NC United States
This paper explores the potential of data augmentation techniques to improve the detection of bee activities using machine learning models applied to bioacoustic data. Traditional machine learning methods used in bee ... 详细信息
来源: 评论
Atmospheric Temperature Prediction Using SVR Models
Atmospheric Temperature Prediction Using SVR Models
收藏 引用
2024 ieee international conference on future machine learning and data science, fmlds 2024
作者: Abdikov, Artem Flores, Bernardo San Jose State University Computer Engineering Department San JoseCA United States
The weather is the state of atmosphere that can be described with various categorical and quantitative parameters. A lot of everyday operations (ex: logistics) depend on these parameters and meteorologists all over th... 详细信息
来源: 评论
Decoding Crude Oil Trade Dynamics: A Comparative Analysis of machine learning Models
Decoding Crude Oil Trade Dynamics: A Comparative Analysis of...
收藏 引用
2024 ieee international conference on future machine learning and data science, fmlds 2024
作者: Singh, Ritu Indian Institute of Technology Department of Economic Sciences Kanpur India
Globally, supply and demand dynamics, energy security considerations, and volatile international relations influence the crude oil energy landscape. This research aims to predict the formation and dissolution of crude... 详细信息
来源: 评论