咨询与建议

限定检索结果

文献类型

  • 13,377 篇 会议
  • 17 篇 期刊文献
  • 16 册 图书

馆藏范围

  • 13,410 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,105 篇 工学
    • 6,398 篇 计算机科学与技术...
    • 5,095 篇 软件工程
    • 1,730 篇 信息与通信工程
    • 1,008 篇 控制科学与工程
    • 735 篇 生物工程
    • 721 篇 电气工程
    • 667 篇 生物医学工程(可授...
    • 582 篇 网络空间安全
    • 511 篇 光学工程
    • 451 篇 安全科学与工程
    • 398 篇 电子科学与技术(可...
    • 344 篇 交通运输工程
    • 328 篇 动力工程及工程热...
    • 288 篇 机械工程
    • 267 篇 仪器科学与技术
  • 2,667 篇 理学
    • 1,298 篇 数学
    • 879 篇 生物学
    • 637 篇 统计学(可授理学、...
    • 535 篇 物理学
    • 328 篇 系统科学
    • 242 篇 化学
  • 1,877 篇 管理学
    • 1,300 篇 管理科学与工程(可...
    • 789 篇 图书情报与档案管...
    • 573 篇 工商管理
  • 947 篇 医学
    • 687 篇 临床医学
    • 681 篇 基础医学(可授医学...
    • 659 篇 公共卫生与预防医...
    • 264 篇 药学(可授医学、理...
  • 508 篇 法学
    • 471 篇 社会学
  • 262 篇 经济学
    • 262 篇 应用经济学
  • 223 篇 农学
  • 210 篇 教育学
  • 198 篇 文学
  • 9 篇 军事学
  • 1 篇 艺术学

主题

  • 2,085 篇 accuracy
  • 1,690 篇 deep learning
  • 1,200 篇 machine learning
  • 1,188 篇 computational mo...
  • 1,044 篇 training
  • 1,026 篇 data models
  • 968 篇 predictive model...
  • 724 篇 real-time system...
  • 687 篇 convolutional ne...
  • 684 篇 feature extracti...
  • 676 篇 machine learning...
  • 585 篇 support vector m...
  • 531 篇 federated learni...
  • 484 篇 adversarial mach...
  • 330 篇 contrastive lear...
  • 311 篇 medical services
  • 295 篇 random forests
  • 289 篇 analytical model...
  • 278 篇 prediction algor...
  • 271 篇 neural networks

机构

  • 105 篇 lovely professio...
  • 101 篇 chitkara univers...
  • 57 篇 department of co...
  • 47 篇 school of comput...
  • 45 篇 school of comput...
  • 45 篇 department of co...
  • 42 篇 the islamic univ...
  • 42 篇 department of co...
  • 40 篇 shandong provinc...
  • 36 篇 college of compu...
  • 32 篇 university of ch...
  • 28 篇 department of co...
  • 27 篇 department of co...
  • 26 篇 computer science...
  • 26 篇 graphic era deem...
  • 25 篇 department of co...
  • 25 篇 amrita vishwa vi...
  • 25 篇 the islamic univ...
  • 23 篇 department of co...
  • 23 篇 college of intel...

作者

  • 23 篇 satvik vats
  • 18 篇 shiva mehta
  • 18 篇 kukreja vinay
  • 18 篇 vats satvik
  • 17 篇 anjali t.
  • 17 篇 rishabh sharma
  • 17 篇 deepak upadhyay
  • 16 篇 senthil kumar th...
  • 15 篇 singh jagendra
  • 15 篇 venugopalan manj...
  • 13 篇 manjunatha
  • 13 篇 rakesh kumar
  • 12 篇 ramya maranan
  • 11 篇 selvanayaki kola...
  • 11 篇 s. kaliappan
  • 10 篇 andersson karl
  • 10 篇 muthukumaravel a...
  • 10 篇 yang yang
  • 10 篇 ayodeji olalekan...
  • 10 篇 surendran r.

语言

  • 12,140 篇 英文
  • 1,269 篇 其他
  • 306 篇 中文
  • 1 篇 西班牙文
检索条件"任意字段=2024 International Conference on Computing, Machine Learning and Data Science, CMLDS 2024"
13410 条 记 录,以下是71-80 订阅
排序:
Multi Dimensional Deep Encoding for Categorical Feature Space  24
Multi Dimensional Deep Encoding for Categorical Feature Spac...
收藏 引用
13th international conference on computing and Pattern Recognition, ICCPR 2024
作者: Alamuri, Madhavi Surampudi, Bapiraju Negi, Atul School of Computer and Information Sciences University of Hyderabad Telangana State Hyderabad India Cognitive Science Lab International Institute of Information Technology Telangana State Hyderabad India
Categorical data classification and clustering are essential to many fields, including pattern recognition, data mining, knowledge discovery, and machine learning. It is crucial to understand how to provide categorica... 详细信息
来源: 评论
machine learning Optimization Model to Predict Fantasy Basketball Teams  1
Machine Learning Optimization Model to Predict Fantasy Baske...
收藏 引用
1st IEEE international conference on computing and data science, ICCDS 2024
作者: Veluru, Vishnuvardhan Xiao, Ting Addagudi, Sohan Kumar, Sehej Mohanraj, Gautham University of North Texas Department of Information Science DentonTX United States University of Minnesota Department of Computer Science MinneapolisMN United States University of North Texas Texas Academy of Math and Science DentonTX United States
In recent years, statistical analysis has revolution-ized decision-making in the NBA and the growth of Fantasy Basketball platforms like DraftKings and FanDuel. This paper presents a novel approach to draft a fantasy ... 详细信息
来源: 评论
FedRL: Federated learning with Non-IID data via Review learning  24
FedRL: Federated Learning with Non-IID Data via Review Learn...
收藏 引用
16th international conference on machine learning and computing (ICMLC)
作者: Wang, Jinbo Wang, Ruijin Pei, Xikai Univ Elect Sci & Technol China Chengdu Peoples R China
Federated learning epitomizes a sophisticated distributed machine learning methodology, enabling collaborative neural network model training across multiple entities without necessitating the transfer of local data, t... 详细信息
来源: 评论
On Optimizing Hyperparameters for Quantum Neural Networks  5
On Optimizing Hyperparameters for Quantum Neural Networks
收藏 引用
2024 international conference on Quantum computing and Engineering
作者: Herbst, Sabrina De Maio, Vincenzo Brandic, Ivona TU Wien Vienna Austria
The increasing capabilities of machine learning (ML) models go hand in hand with an immense amount of data and computational power required for training. Therefore, training is usually outsourced into HPC facilities, ... 详细信息
来源: 评论
Smart Commerce: Unleashing machine learning for Optimal Customer Experiences
Smart Commerce: Unleashing Machine Learning for Optimal Cust...
收藏 引用
2024 international conference on Electrical, Electronics and computing Technologies, ICEECT 2024
作者: Agarwal, Rachna Agarwal, Shipra Mittal, Varsha Graphic Era Deemed to be University Dept.of Commerce Dehradun India Graphic Era Deemed to be University Dept of Computer Science and Engineering Dehradun India
machine learning is a branch of Artificial Intelligence (AI) and computer technology which address on the usage or application of data and Algorithms to emulate the style that humans learn, gradually improving its acc... 详细信息
来源: 评论
CAUDA: Cloud-assisted Active Unsupervised Domain Adaptation for On-device learning
CAUDA: Cloud-assisted Active Unsupervised Domain Adaptation ...
收藏 引用
2024 IEEE international Performance, computing, and Communications conference, IPCCC 2024
作者: Wang, Zefu Zheng, Zhenzhe Wu, Fan Shanghai Jiao Tong University Department of Computer Science and Engineering Shanghai China
The recent developments in mobile computing have facilitated the application of on-device machine learning on edge devices. However, complex heterogeneous environmental factors such as network conditions, spatial loca... 详细信息
来源: 评论
PDE-Net: Pyramid Depth Estimation Network for Light Fields  24
PDE-Net: Pyramid Depth Estimation Network for Light Fields
收藏 引用
16th international conference on machine learning and computing (ICMLC)
作者: Wang, Qiong Li, Yan Zhejiang Univ Technol Hangzhou Peoples R China
Depth information is critical for highly developed robotic systems which need the global perception of their surroundings. A light field camera records with a large amount of data, increasing potentials for the depth ... 详细信息
来源: 评论
Fossil-Net Lung Cancer Prediction and Classification from CT Images Using Convolution Neural Networks  2
Fossil-Net Lung Cancer Prediction and Classification from CT...
收藏 引用
2nd international conference on computing and data Analytics, ICCDA 2024
作者: Deepa, V. Merlin Christo, F. Rajalakshmi Institute of Science and Technology Department of Artificial Intelligence and Data Science TamilNadu Chennai600124 India
Lung cancer is the leading cause of death worldwide for both men and women. The most well-known disease is the heart disease followed by lung cancer. Early discovery of lung cancer can effectively treat lung cancer at... 详细信息
来源: 评论
Enhanced Crop Yield Prediction using machine learning Techniques  15
Enhanced Crop Yield Prediction using Machine Learning Techni...
收藏 引用
15th international conference on computing Communication and Networking Technologies, ICCCNT 2024
作者: Nossam, Sri Chakradhar Katakam, Rishi Anirudh Pulastya, Gopa Venugopalan, Manju Amrita Vishwa Vidyapeetham Amrita School of Computing Department of Computer Science and Engineering Bengaluru India
In modern agriculture, accurately anticipating crop yield estimation is critical aids of sustainable resource management, efficient decision-making, and food security. This is therefore a process that includes a break... 详细信息
来源: 评论
Quantifying the Limits of Classical machine learning Models Using Contextuality  5
Quantifying the Limits of Classical Machine Learning Models ...
收藏 引用
2024 international conference on Quantum computing and Engineering
作者: Anschuetz, Eric R. Teo, Mariesa Yang, Willers Sud, James Kang, Christopher Tomesh, Teague Chong, Frederic T. CALTECH Inst Quantum Informat & Matter Pasadena CA 91125 USA Univ Chicago Pritzker Sch Mol Engn Chicago IL 60637 USA Univ Chicago Dept Comp Sci Chicago IL 60637 USA Infleation Chicago IL USA
Classical machine learning models struggle with learning and prediction tasks on data sets exhibiting long-range correlations. To quantify this observation we introduce a new quantity we call strong k-contextuality, d... 详细信息
来源: 评论