咨询与建议

限定检索结果

文献类型

  • 70 篇 会议
  • 2 册 图书
  • 1 篇 期刊文献

馆藏范围

  • 73 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 59 篇 工学
    • 55 篇 电气工程
    • 39 篇 计算机科学与技术...
    • 17 篇 信息与通信工程
    • 3 篇 软件工程
    • 1 篇 动力工程及工程热...
    • 1 篇 控制科学与工程
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 1 篇 理学
    • 1 篇 数学
    • 1 篇 物理学
    • 1 篇 统计学(可授理学、...

主题

  • 21 篇 machine learning
  • 8 篇 training
  • 6 篇 wireless communi...
  • 5 篇 neural networks
  • 4 篇 feature extracti...
  • 3 篇 conferences
  • 3 篇 deep learning
  • 3 篇 signal processin...
  • 3 篇 servers
  • 3 篇 signal processin...
  • 3 篇 channel estimati...
  • 3 篇 federated learni...
  • 3 篇 machine learning...
  • 2 篇 spatial channel ...
  • 2 篇 computer archite...
  • 2 篇 face recognition
  • 2 篇 speech enhanceme...
  • 2 篇 convergence
  • 2 篇 optimization
  • 2 篇 image retrieval

机构

  • 3 篇 georgia inst tec...
  • 2 篇 cheng kung univ ...
  • 2 篇 department of si...
  • 2 篇 tech univ munich...
  • 2 篇 htw berlin visua...
  • 2 篇 beihang univ peo...
  • 2 篇 univ florida dep...
  • 2 篇 chinese acad sci...
  • 1 篇 univ surrey ctr ...
  • 1 篇 univ carlos iii ...
  • 1 篇 georgia inst tec...
  • 1 篇 department of el...
  • 1 篇 univ tromso dept...
  • 1 篇 sharif univ tech...
  • 1 篇 univ cantabria d...
  • 1 篇 allen school of ...
  • 1 篇 georgia inst tec...
  • 1 篇 riken brain sci ...
  • 1 篇 lehigh universit...
  • 1 篇 electrical and c...

作者

  • 3 篇 larsen jan
  • 2 篇 wiese thomas
  • 2 篇 nakamura atsushi
  • 2 篇 barthel kai uwe
  • 2 篇 schall konstanti...
  • 2 篇 chen chen
  • 2 篇 ahmed alkhateeb
  • 2 篇 fekri faramarz
  • 2 篇 cao xianbin
  • 2 篇 simeone osvaldo
  • 2 篇 jiao l. c.
  • 2 篇 chien jen-tzung
  • 2 篇 jung cheolkon
  • 2 篇 chang ying-lan
  • 2 篇 figueiras-vidal ...
  • 2 篇 li xuelong
  • 2 篇 manzuri mohammad...
  • 2 篇 yu zhang
  • 2 篇 abdi afshin
  • 2 篇 bao chang-chun

语言

  • 73 篇 英文
检索条件"任意字段=21st IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2011"
73 条 记 录,以下是1-10 订阅
排序:
ieee international workshop on machine learning for signal processing: Preface
IEEE International Workshop on Machine Learning for Signal P...
收藏 引用
21st ieee international workshop on machine learning for signal processing, mlsp 2011
作者: Tan, Tieniu Katagiri, Shigeru Tao, Jianhua Nakamura, Atsushi Larsen, Jan
The 21st ieee international workshop on machine learning for signal processing will be held in Beijing, China, on September 18-21, 2011. The workshop series is the major annual technical event of the ieee signal Proce... 详细信息
来源: 评论
2011 ieee international workshop on machine learning for signal processing - Proceedings of mlsp 2011
2011 IEEE International Workshop on Machine Learning for Sig...
收藏 引用
21st ieee international workshop on machine learning for signal processing, mlsp 2011
The proceedings contain 96 papers. The topics discussed include: protein subcellular localization prediction based on profile alignment and gene ontology;a sinusoidal audio and speech analysis/synthesis model based on...
来源: 评论
KERNEL ENTROPY COMPONENT ANALYSIS: NEW THEORY AND SEMI-SUPERVISED learning
KERNEL ENTROPY COMPONENT ANALYSIS: NEW THEORY AND SEMI-SUPER...
收藏 引用
21st ieee international workshop on machine learning for signal processing (mlsp)
作者: Jenssen, Robert Univ Tromso Dept Phys & Technol N-9001 Tromso Norway
A new theory for kernel entropy component analysis (kernel ECA) is developed, based on distribution dependent convolution operators, ensuring the validity of the method for any positive semi-definite kernel. Furthermo... 详细信息
来源: 评论
COOPERATIVE DATA CENSORING FOR ENERGY-EFFICIENT COMMUNICATIONS IN SENSOR NETWORKS
COOPERATIVE DATA CENSORING FOR ENERGY-EFFICIENT COMMUNICATIO...
收藏 引用
21st ieee international workshop on machine learning for signal processing (mlsp)
作者: Fernandez-Bes, Jesus Arroyo-Valles, Rocio Cid-Sueiro, Jesus Univ Carlos III Madrid Signal Theory & Commun Dept Leganes 28911 Spain
signal processing algorithms in Wireless Sensor Networks claim for energy efficiency because of node energy scarcity. Tailored to this scenario, in this paper we develop energy-efficient cooperative strategies for sel... 详细信息
来源: 评论
METHODS FOR learning ADAPTIVE DICTIONARY IN UNDERDETERMINED SPEECH SEPARATION
METHODS FOR LEARNING ADAPTIVE DICTIONARY IN UNDERDETERMINED ...
收藏 引用
21st ieee international workshop on machine learning for signal processing (mlsp)
作者: Xu, Tao Wang, Wenwu Univ Surrey Ctr Vis Speech & Signal Proc Guildford GU2 5XH Surrey England
Underdetermined speech separation is a challenging problem that has been studied extensively in recent years. A promising method to this problem is based on the so-called sparse signal representation. Using this techn... 详细信息
来源: 评论
DIMENSIONALITY REDUCTION FOR EEG CLASSIFICATION USING MUTUAL INFORMATION AND SVM
DIMENSIONALITY REDUCTION FOR EEG CLASSIFICATION USING MUTUAL...
收藏 引用
21st ieee international workshop on machine learning for signal processing (mlsp)
作者: Guerrero-Mosquera, Carlos Verleysen, Michel Navia Vazquez, Angel Univ Carlos III Madrid Signal Proc & Commun Dept Avda Univ 30 Leganes 28911 Spain Catholic Univ Louvain Machine Learning Grp B-1348 Louvain Belgium
Dimensionality reduction is a well known technique in signal processing oriented to improve both the computational cost and the performance of classifiers. We use an electroencephalogram (EEG) feature matrix based on ... 详细信息
来源: 评论
TWO stAGE CLASSIFIER CHAIN ARCHITECTURE FOR EFFICIENT PAIR-WISE MULTI-LABEL learning
TWO STAGE CLASSIFIER CHAIN ARCHITECTURE FOR EFFICIENT PAIR-W...
收藏 引用
21st ieee international workshop on machine learning for signal processing (mlsp)
作者: Gjorgjevikj, Dejan Madjarov, Gjorgji Ss Cyril & Methodius Univ FEEIT Skopje North Macedonia
A common approach for solving multi-label learning problems using problem-transformation methods and dichotomizing classifiers is the pair-wise decomposition strategy. One of the problems with this approach is the nee... 详细信息
来源: 评论
COLLABORATIVE learning OF MIXTURE MODELS USING DIFFUSION ADAPTATION
COLLABORATIVE LEARNING OF MIXTURE MODELS USING DIFFUSION ADA...
收藏 引用
21st ieee international workshop on machine learning for signal processing (mlsp)
作者: Towfic, Zaid J. Chen, Jianshu Sayed, Ali H. Univ Calif Los Angeles Dept Elect Engn Los Angeles CA 90024 USA
In large ad-hoc networks, classification tasks such as spam filtering, multi-camera surveillance, and advertising have been traditionally implemented in a centralized manner by means of fusion centers. These centers r... 详细信息
来源: 评论
BAYESIAN FEATURE SELECTION FOR SPARSE TOPIC MODEL
BAYESIAN FEATURE SELECTION FOR SPARSE TOPIC MODEL
收藏 引用
21st ieee international workshop on machine learning for signal processing (mlsp)
作者: Chang, Ying-Lan Lee, Kuen-Feng Chien, Jen-Tzung Cheng Kung Univ Dept Comp Sci & Informat Engn Tainan Taiwan
This paper presents a new Bayesian sparse learning approach to select salient lexical features and build sparse topic model (stM). The Bayesian learning is performed by incorporating the spike-and-slab priors so that ... 详细信息
来源: 评论
MODELING MUSICOLOGICAL INFORMATION AS TRIGRAMS IN A SYstEM FOR SIMULTANEOUS CHORD AND LOCAL KEY EXTRACTION
MODELING MUSICOLOGICAL INFORMATION AS TRIGRAMS IN A SYSTEM F...
收藏 引用
21st ieee international workshop on machine learning for signal processing (mlsp)
作者: Pauwels, Johan Martens, Jean-Pierre Leman, Marc Univ Ghent Digital Speech & Signal Proc Grp ELIS DSSP Ghent Belgium Univ Ghent Inst Psychoacoust & Elect Mus IPEM Ghent Belgium
In this paper, we discuss the introduction of a trigram musicological model in a simultaneous chord and local key extraction system. By enlarging the context of the musicological model, we hoped to achieve a higher ac... 详细信息
来源: 评论