咨询与建议

限定检索结果

文献类型

  • 3,134 篇 会议
  • 20 册 图书
  • 18 篇 期刊文献

馆藏范围

  • 3,172 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,131 篇 工学
    • 1,886 篇 计算机科学与技术...
    • 1,008 篇 软件工程
    • 265 篇 控制科学与工程
    • 257 篇 电气工程
    • 244 篇 信息与通信工程
    • 197 篇 生物工程
    • 155 篇 交通运输工程
    • 106 篇 生物医学工程(可授...
    • 96 篇 机械工程
    • 61 篇 光学工程
    • 58 篇 安全科学与工程
    • 57 篇 电子科学与技术(可...
    • 49 篇 材料科学与工程(可...
    • 47 篇 动力工程及工程热...
    • 41 篇 建筑学
    • 36 篇 土木工程
  • 517 篇 理学
    • 266 篇 数学
    • 203 篇 生物学
    • 123 篇 统计学(可授理学、...
    • 90 篇 物理学
    • 58 篇 系统科学
  • 409 篇 管理学
    • 268 篇 管理科学与工程(可...
    • 165 篇 图书情报与档案管...
    • 100 篇 工商管理
  • 203 篇 教育学
    • 200 篇 教育学
  • 166 篇 医学
    • 161 篇 临床医学
    • 80 篇 基础医学(可授医学...
    • 52 篇 药学(可授医学、理...
    • 33 篇 公共卫生与预防医...
  • 69 篇 法学
    • 58 篇 社会学
  • 31 篇 经济学
  • 18 篇 农学
  • 7 篇 文学
  • 1 篇 艺术学

主题

  • 295 篇 machine learning
  • 291 篇 deep learning
  • 142 篇 training
  • 125 篇 data models
  • 120 篇 neural networks
  • 114 篇 accuracy
  • 105 篇 feature extracti...
  • 101 篇 data mining
  • 87 篇 predictive model...
  • 83 篇 artificial intel...
  • 82 篇 computational mo...
  • 68 篇 machine learning...
  • 62 篇 students
  • 57 篇 reinforcement le...
  • 57 篇 real-time system...
  • 47 篇 convolutional ne...
  • 45 篇 big data
  • 43 篇 internet of thin...
  • 42 篇 support vector m...
  • 42 篇 training data

机构

  • 30 篇 school of comput...
  • 11 篇 institute of inf...
  • 9 篇 kazan natl res t...
  • 9 篇 school of cyber ...
  • 7 篇 school of comput...
  • 6 篇 school of inform...
  • 5 篇 inesc tec porto
  • 5 篇 hefei univ techn...
  • 5 篇 wroclaw univ sci...
  • 4 篇 univ michigan an...
  • 4 篇 school of automa...
  • 4 篇 chinese acad sci...
  • 4 篇 college of compu...
  • 4 篇 univ minho algor...
  • 4 篇 university of ba...
  • 4 篇 school of mechan...
  • 4 篇 xi an jiao tong ...
  • 4 篇 nanyang technol ...
  • 4 篇 singapore manage...
  • 4 篇 university of mi...

作者

  • 7 篇 yang yang
  • 7 篇 santos matilde
  • 6 篇 peng jun
  • 6 篇 taghi m. khoshgo...
  • 6 篇 wang fei
  • 5 篇 li peng
  • 5 篇 horvath tomas
  • 5 篇 wozniak michal
  • 5 篇 machado jose
  • 5 篇 r.c. luo
  • 4 篇 zhang tao
  • 4 篇 lee seong-whan
  • 4 篇 ksieniewicz pawe...
  • 4 篇 zhang lei
  • 4 篇 yang yi
  • 4 篇 novais paulo
  • 4 篇 li li
  • 4 篇 trong-hop do
  • 4 篇 liu qin
  • 4 篇 shimizu jun

语言

  • 3,039 篇 英文
  • 125 篇 其他
  • 15 篇 中文
检索条件"任意字段=21st International Conference on Intelligent Data Engineering and Automated Learning"
3172 条 记 录,以下是751-760 订阅
排序:
Towards Latent Space Optimization of GANs Using Meta-learning  21st
Towards Latent Space Optimization of GANs Using Meta-Learnin...
收藏 引用
21st international conference on Image Analysis and Processing (ICIAP)
作者: Fontanini, Tomaso Pratico, Claudio Prati, Andrea Univ Parma Dept Engn & Architecture IMP Lab Parma Italy
The necessity to use very large datasets in order to train Generative Adversarial Networks (GANs) has limited their use in cases where the data at disposal are scarce or poorly labelled (e.g., in real life application... 详细信息
来源: 评论
LOGIC: Probabilistic Machine learning for Time Series Classification  21
LOGIC: Probabilistic Machine Learning for Time Series Classi...
收藏 引用
21st IEEE international conference on data Mining (IEEE ICDM)
作者: Berns, Fabian Huewel, Jan David Beecks, Christian Univ Munster Dept Comp Sci Munster Germany
Time series data is one of the complex data types commonly encountered in many application areas ranging from automotive, finance, medicine to industry. A prominent task is time series classification, which entails id... 详细信息
来源: 评论
Evaluating and Explaining Generative Adversarial Networks for Continual learning under Concept Drift  21
Evaluating and Explaining Generative Adversarial Networks fo...
收藏 引用
21st IEEE international conference on data Mining (IEEE ICDM)
作者: Guzy, Filip Wozniak, Michal Krawczyk, Bartosz Wroclaw Univ Sci & Technol Dept Syst & Comp Networks Wroclaw Poland Virginia Commonwealth Univ Dept Comp Sci Sch Engn Richmond VA USA
Generative Adversarial Networks (GANs) are among the most popular contemporary machine learning algorithms. Despite remarkable successes in their developments, existing GANs cannot offer the appropriate tools to monit... 详细信息
来源: 评论
Smart Parking System with automated Vehicle Log Using Haar Cascade Classifier ANPR  6th
Smart Parking System with Automated Vehicle Log Using Haar ...
收藏 引用
Proceedings of the 6th IFIP TC 12 international conference on Computational Intelligence in data Science, ICCIDS 2023
作者: Gopikrishnan, S. Madduru, Abhiram Kalyan Karamsetty, Kaushik Ravuri, Dinesh Rohit School of Computer Science and Engineering VIT-AP University Andhra Pradesh Amaravati522237 India
Recent developments in intelligent transportation systems and GPUs for deep learning computation have made Automatic vehicle Number Plate Detection and Recognition (ANPR) a fascinating area for academic inquiry. ANPR ... 详细信息
来源: 评论
Internet of Things Enabled Framework for Sustainable Mobility and Clean Environment in Smart Cities  1st
Internet of Things Enabled Framework for Sustainable Mobilit...
收藏 引用
1st international conference on Artificial Intelligence and Internet of Things, ICAII 2022
作者: Kaur, Surleen Sharma, Sandeep Department of Computer Engineering and Technology Guru Nanak Dev University Amritsar India
With people moving to cities for permanent settlements, there has been a rapid rise in urbanization worldwide. To accommodate such a vast number of citizens and provide them with quality life, the existing infrastruct... 详细信息
来源: 评论
Synthetic Slowness Shear Well-Log Prediction Using Supervised Machine learning Models  21st
Synthetic Slowness Shear Well-Log Prediction Using Supervise...
收藏 引用
21st international conference on Artificial Intelligence and Soft Computing (ICAISC)
作者: Tamoto, Hugo Contreras, Rodrigo Colnago dos Santos, Franciso Lledo Viana, Monique Simplicio Gioria, Rafael dos Santos Carneiro, Cleyton de Carvalho Univ Sao Paulo Polytech Sch Dept Min & Petr Engn BR-11013560 Sao Paulo SP Brazil Sao Paulo State Univ Inst Biosci Letters & Exact Sci BR-15054000 Sao Paulo SP Brazil Mato Grosso State Univ Fac Engn & Architecture BR-78217900 Caceres MT Brazil Univ Fed Sao Carlos Dept Comp BR-13565905 Sao Carlos SP Brazil
The shear slowness well-log is a fundamental feature used in reservoir modeling, geomechanics, elastic properties, and borehole stability. This data is indirectly measured by well-logs and assists the geological, petr... 详细信息
来源: 评论
End-To-End data Characteristics Monitoring for MLOps
End-To-End Data Characteristics Monitoring for MLOps
收藏 引用
international Joint conference on Computer Science and Software engineering (JCSSE)
作者: Natnaree Jubju Natawut Nupairoj Department of Computer Engineering Chulalongkorn University Bangkok Thailand
Machine learning models employ data for gathering insights, making decisions, and generating predictions. As inferenced data fed into the model may drift or shift over time, it may lead to model's performance degr... 详细信息
来源: 评论
Predictions of Energy Consumption of Buildings' Life Cycle to Mitigate the Effects of Climate Change with a Focus on Energy Efficiency
Predictions of Energy Consumption of Buildings' Life Cycle t...
收藏 引用
2022 IEEE Pune Section international conference, PuneCon 2022
作者: Patil, Prajyot Pramod Sondkar, Shilpa Instrumentation Engineering Vishwakarma Institute of Technology Pune India
Climate change and Energy are the prominent topics addressed by researchers in the 21st century. One of the concerns shown by the researchers is the amount of CO2 emitted by buildings across the globe. In 2020, the co... 详细信息
来源: 评论
Accurate Graph-Based PU learning without Class Prior  21
Accurate Graph-Based PU Learning without Class Prior
收藏 引用
21st IEEE international conference on data Mining (IEEE ICDM)
作者: Yoo, Jaemin Kim, Junghun Yoon, Hoyoung Kim, Geonsoo Jang, Changwon Kang, U. Seoul Natl Univ Seoul South Korea NCSOFT Seoul South Korea
How can we classify graph-structured data only with positive labels? Graph-based positive-unlabeled (PU) learning is to train a binary classifier given only the positive labels when the relationship between examples i... 详细信息
来源: 评论
Application of Machine learning for Growth Environment Prediction in Agriculture  21
Application of Machine Learning for Growth Environment Predi...
收藏 引用
21st IEEE international conference on data Mining (IEEE ICDM)
作者: Fujita, Momoko Yamada, Akari Susuki, Mao Makino, Hiroya Kita, Eisuke Nagoya Univ Grad Sch Informat Nagoya Aichi 4648601 Japan
It is very important to control the value of saturation in the adequate range in tomato cultivation in greenhouse. The prediction of the saturation value in greenhouse are discussed in this study. The mathematical mod... 详细信息
来源: 评论