咨询与建议

限定检索结果

文献类型

  • 3,134 篇 会议
  • 20 册 图书
  • 18 篇 期刊文献

馆藏范围

  • 3,172 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,128 篇 工学
    • 1,884 篇 计算机科学与技术...
    • 1,006 篇 软件工程
    • 264 篇 控制科学与工程
    • 256 篇 电气工程
    • 243 篇 信息与通信工程
    • 196 篇 生物工程
    • 154 篇 交通运输工程
    • 106 篇 生物医学工程(可授...
    • 96 篇 机械工程
    • 61 篇 光学工程
    • 57 篇 电子科学与技术(可...
    • 57 篇 安全科学与工程
    • 49 篇 材料科学与工程(可...
    • 47 篇 动力工程及工程热...
    • 41 篇 建筑学
    • 36 篇 土木工程
  • 515 篇 理学
    • 265 篇 数学
    • 202 篇 生物学
    • 123 篇 统计学(可授理学、...
    • 90 篇 物理学
    • 58 篇 系统科学
  • 408 篇 管理学
    • 267 篇 管理科学与工程(可...
    • 165 篇 图书情报与档案管...
    • 100 篇 工商管理
  • 204 篇 教育学
    • 201 篇 教育学
  • 166 篇 医学
    • 161 篇 临床医学
    • 80 篇 基础医学(可授医学...
    • 52 篇 药学(可授医学、理...
    • 33 篇 公共卫生与预防医...
  • 69 篇 法学
    • 58 篇 社会学
  • 31 篇 经济学
  • 18 篇 农学
  • 7 篇 文学
  • 1 篇 艺术学

主题

  • 295 篇 machine learning
  • 290 篇 deep learning
  • 141 篇 training
  • 124 篇 data models
  • 120 篇 neural networks
  • 113 篇 accuracy
  • 104 篇 feature extracti...
  • 101 篇 data mining
  • 87 篇 predictive model...
  • 83 篇 artificial intel...
  • 82 篇 computational mo...
  • 68 篇 machine learning...
  • 62 篇 students
  • 57 篇 reinforcement le...
  • 57 篇 real-time system...
  • 46 篇 convolutional ne...
  • 45 篇 big data
  • 43 篇 internet of thin...
  • 42 篇 support vector m...
  • 42 篇 humans

机构

  • 30 篇 school of comput...
  • 11 篇 institute of inf...
  • 9 篇 kazan natl res t...
  • 9 篇 school of cyber ...
  • 7 篇 school of comput...
  • 6 篇 school of inform...
  • 5 篇 inesc tec porto
  • 5 篇 hefei univ techn...
  • 5 篇 wroclaw univ sci...
  • 4 篇 univ michigan an...
  • 4 篇 school of automa...
  • 4 篇 chinese acad sci...
  • 4 篇 college of compu...
  • 4 篇 univ minho algor...
  • 4 篇 university of ba...
  • 4 篇 school of mechan...
  • 4 篇 xi an jiao tong ...
  • 4 篇 nanyang technol ...
  • 4 篇 singapore manage...
  • 4 篇 university of mi...

作者

  • 7 篇 yang yang
  • 7 篇 santos matilde
  • 6 篇 peng jun
  • 6 篇 taghi m. khoshgo...
  • 6 篇 wang fei
  • 5 篇 li peng
  • 5 篇 horvath tomas
  • 5 篇 wozniak michal
  • 5 篇 machado jose
  • 5 篇 r.c. luo
  • 4 篇 zhang tao
  • 4 篇 lee seong-whan
  • 4 篇 ksieniewicz pawe...
  • 4 篇 zhang lei
  • 4 篇 yang yi
  • 4 篇 novais paulo
  • 4 篇 li li
  • 4 篇 trong-hop do
  • 4 篇 liu qin
  • 4 篇 shimizu jun

语言

  • 3,040 篇 英文
  • 124 篇 其他
  • 15 篇 中文
检索条件"任意字段=21st International Conference on Intelligent Data Engineering and Automated Learning"
3172 条 记 录,以下是801-810 订阅
排序:
Goal-Oriented Navigation with Avoiding Obstacle based on Deep Reinforcement learning in Continuous Action Space  21
Goal-Oriented Navigation with Avoiding Obstacle based on Dee...
收藏 引用
21st international conference on Control, Automation and Systems (ICCAS)
作者: Hien, Pham Xuan Kim, Gon-Woo Chungbuk Natl Univ Dept Control & Robot Engn Cheongju South Korea Chungbuk Natl Univ Dept Intelligent Syst & Robot Cheongju South Korea
Obstacle avoidance problems using Deep Reinforcement learning (DRL) are becoming possible solutions for autonomous mobile robots. In real-world situations with stationary and moving obstacles, mobile robots must be ab... 详细信息
来源: 评论
data Poisoning Attack to X-armed Bandits  21
Data Poisoning Attack to X-armed Bandits
收藏 引用
21st IEEE international conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2022
作者: Luo, Zhi Li, Youqi Chen, Lixing Xu, Zichuan Zhou, Pan Huazhong University of Science and Technology School of Cyber Science and Engineering China Beijing Institute of Technology School of Cyberspace Science and Technology School of Computer Science China Shanghai Jiao Tong University Institute of Cyber Science and Technology China Dalian University of Technology School of Software China Huazhong University of Science and Technology Hubei Engineering Research Center on Big Data Security School of Cyber Science and Engineering China
X-armed bandits have achieved the state-of-the-art performance in optimizing unknown stochastic continuous functions, which can model many machine learning tasks, specially in big data-driven personalized recommendati... 详细信息
来源: 评论
DroBoost: An intelligent Score and Model Boosting Method for Drone Detection  21st
DroBoost: An Intelligent Score and Model Boosting Method for...
收藏 引用
21st international conference on Image Analysis and Processing (ICIAP)
作者: Eryuksel, Ogulcan Ozfuttu, Kamil Anil Akyon, Fatih Cagatay Sahin, Kadir Buyukborekci, Efe Cavusoglu, Devrim Altinuc, Sinan OBSS Technol OBSS AI 1606 Cad 4-1-307 Cyberpk Cyberplaza C Blok 3 Kat Ankara Turkey
Drone detection is a challenging object detection task where visibility conditions and quality of the images may be unfavorable, and detections might become difficult due to complex backgrounds, small visible objects,... 详细信息
来源: 评论
Multi-Label kNN classifier with Online Dual Memory on data stream  21
Multi-Label kNN classifier with Online Dual Memory on data s...
收藏 引用
21st IEEE international conference on data Mining (IEEE ICDM)
作者: Wang, Xihui Kuntz, Pascale Meyer, Frank Lemaire, Vincent Lab Digital Sci Nantes Nantes France Orange Labs Lannion France
Due to an ever-increasing demand for analyzing the large volumes of information issuing from high-speed data streams, multi-label stream classification is replacing the traditional offline multi-label classification s... 详细信息
来源: 评论
Towards Interpretability and Personalization: A Predictive Framework for Clinical Time-series Analysis  21
Towards Interpretability and Personalization: A Predictive F...
收藏 引用
21st IEEE international conference on data Mining (IEEE ICDM)
作者: Li, Yang Zhang, Xianli Qian, Buyue Gao, Zeyu Guan, Chong Zheng, Yefeng Zheng, Hansen Wu, Fenglang Li, Chen Xi An Jiao Tong Univ Sch Comp Sci & Technol Xian Shaanxi Peoples R China Tencent Jarvis Lab Shenzhen Peoples R China Xi An Jiao Tong Univ Affiliated Hosp 1 Xian Shaanxi Peoples R China Xi An Jiao Tong Univ Natl Engn Lab Big Data Analyt Xian Shaanxi Peoples R China
Clinical time-series is receiving long-term attention in data mining and machine learning communities and has boosted a variety of data-driven applications. Identifying similar patients or subgroups from clinical time... 详细信息
来源: 评论
Gated Information Bottleneck for Generalization in Sequential Environments  21
Gated Information Bottleneck for Generalization in Sequentia...
收藏 引用
21st IEEE international conference on data Mining (IEEE ICDM)
作者: Alesiani, Francesco Yu, Shujian Yu, Xi NEC Labs Europe Heidelberg Germany UiT Arctic Univ Norway Tromso Norway Xi An Jiao Tong Univ Xian Peoples R China Univ Florida Gainesville FL 32611 USA
Deep neural networks suffer from poor generalization to unseen environments when the underlying data distribution is different from that in the training set. By learning minimum sufficient representations from trainin... 详细信息
来源: 评论
Self-supervised Prototype Conditional Few-Shot Object Detection  21st
Self-supervised Prototype Conditional Few-Shot Object Detect...
收藏 引用
21st international conference on Image Analysis and Processing (ICIAP)
作者: Kobayashi, Daisuke Toshiba Co Ltd Corp Res & Dev Ctr Kawasaki Kanagawa Japan
Traditional deep learning-based object detection methods require a large amount of annotation for training, and creating such a dataset is expensive. Few-shot object detection which detects a new category of objects w... 详细信息
来源: 评论
Improving Identification of Defective Wafer Maps by data Augmentation via Enhanced CycleGAN
Improving Identification of Defective Wafer Maps by Data Aug...
收藏 引用
international conference on Electrical engineering, Computing Science and Automatic Control (CCE)
作者: Lamia Alam Nasser Kehtarnavaz Department of Electrical and Computer Engineering University of Texas at Dallas Texas USA
In integrated circuit manufacturing, a wafer map represents a pattern of defective dies or chips on a wafer. In order to identify different defective wafer maps or patterns by a deep learning model, it is essential th... 详细信息
来源: 评论
An OPC UA-based industrial Big data architecture
An OPC UA-based industrial Big Data architecture
收藏 引用
IEEE international conference on Industrial Informatics (INDIN)
作者: Eduard Hirsch Simon Hoher stefan Huber JR Centre for Intelligent and Secure Industrial Automation Salzburg University of Applied Sciences Puch Austria
Industry 4.0 factories are complex and data-driven. data is yielded from many sources, including sensors, PLCs, and other devices, but also from IT, like ERP or CRM systems. We ask how to collect and process this data...
来源: 评论
Incomplete Multi-view Multi-label Active learning  21
Incomplete Multi-view Multi-label Active Learning
收藏 引用
21st IEEE international conference on data Mining (IEEE ICDM)
作者: Qu, Chuanwei Wang, Kuangmeng Zhang, Hong Yu, Guoxian Domeniconi, Carlotta Southwest Univ Coll Comp & Informat Sci Chongqing Peoples R China Shandong Univ Sch Software Jinan Peoples R China George Mason Univ Dept Comp Sci Fairfax VA 22030 USA
The label information of training data is crucial for effective machine learning in many domains, while it is expensive to annotate data at a large-scale by domain experts. The problem was intensified by the multiplic... 详细信息
来源: 评论