咨询与建议

限定检索结果

文献类型

  • 3,134 篇 会议
  • 20 册 图书
  • 18 篇 期刊文献

馆藏范围

  • 3,172 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,131 篇 工学
    • 1,886 篇 计算机科学与技术...
    • 1,008 篇 软件工程
    • 265 篇 控制科学与工程
    • 257 篇 电气工程
    • 244 篇 信息与通信工程
    • 197 篇 生物工程
    • 155 篇 交通运输工程
    • 106 篇 生物医学工程(可授...
    • 96 篇 机械工程
    • 61 篇 光学工程
    • 58 篇 安全科学与工程
    • 57 篇 电子科学与技术(可...
    • 49 篇 材料科学与工程(可...
    • 47 篇 动力工程及工程热...
    • 41 篇 建筑学
    • 36 篇 土木工程
  • 517 篇 理学
    • 266 篇 数学
    • 203 篇 生物学
    • 123 篇 统计学(可授理学、...
    • 90 篇 物理学
    • 58 篇 系统科学
  • 409 篇 管理学
    • 268 篇 管理科学与工程(可...
    • 165 篇 图书情报与档案管...
    • 100 篇 工商管理
  • 203 篇 教育学
    • 200 篇 教育学
  • 166 篇 医学
    • 161 篇 临床医学
    • 80 篇 基础医学(可授医学...
    • 52 篇 药学(可授医学、理...
    • 33 篇 公共卫生与预防医...
  • 69 篇 法学
    • 58 篇 社会学
  • 31 篇 经济学
  • 18 篇 农学
  • 7 篇 文学
  • 1 篇 艺术学

主题

  • 295 篇 machine learning
  • 291 篇 deep learning
  • 142 篇 training
  • 125 篇 data models
  • 120 篇 neural networks
  • 114 篇 accuracy
  • 105 篇 feature extracti...
  • 101 篇 data mining
  • 87 篇 predictive model...
  • 83 篇 artificial intel...
  • 82 篇 computational mo...
  • 68 篇 machine learning...
  • 62 篇 students
  • 57 篇 reinforcement le...
  • 57 篇 real-time system...
  • 47 篇 convolutional ne...
  • 45 篇 big data
  • 43 篇 internet of thin...
  • 42 篇 support vector m...
  • 42 篇 training data

机构

  • 30 篇 school of comput...
  • 11 篇 institute of inf...
  • 9 篇 kazan natl res t...
  • 9 篇 school of cyber ...
  • 7 篇 school of comput...
  • 6 篇 school of inform...
  • 5 篇 inesc tec porto
  • 5 篇 hefei univ techn...
  • 5 篇 wroclaw univ sci...
  • 4 篇 univ michigan an...
  • 4 篇 school of automa...
  • 4 篇 chinese acad sci...
  • 4 篇 college of compu...
  • 4 篇 univ minho algor...
  • 4 篇 university of ba...
  • 4 篇 school of mechan...
  • 4 篇 xi an jiao tong ...
  • 4 篇 nanyang technol ...
  • 4 篇 singapore manage...
  • 4 篇 university of mi...

作者

  • 7 篇 yang yang
  • 7 篇 santos matilde
  • 6 篇 peng jun
  • 6 篇 taghi m. khoshgo...
  • 6 篇 wang fei
  • 5 篇 li peng
  • 5 篇 horvath tomas
  • 5 篇 wozniak michal
  • 5 篇 machado jose
  • 5 篇 r.c. luo
  • 4 篇 zhang tao
  • 4 篇 lee seong-whan
  • 4 篇 ksieniewicz pawe...
  • 4 篇 zhang lei
  • 4 篇 yang yi
  • 4 篇 novais paulo
  • 4 篇 li li
  • 4 篇 trong-hop do
  • 4 篇 liu qin
  • 4 篇 shimizu jun

语言

  • 3,039 篇 英文
  • 125 篇 其他
  • 15 篇 中文
检索条件"任意字段=21st International Conference on Intelligent Data Engineering and Automated Learning"
3172 条 记 录,以下是851-860 订阅
排序:
Rational Orthogonal Wavelet Pulse and Feature Extraction Method Based on Auditory Frequency Cepstral Coefficient for Underwater Target Localization  21
Rational Orthogonal Wavelet Pulse and Feature Extraction Met...
收藏 引用
21st international conference on Wavelet Analysis and Pattern Recognition, ICWAPR 2023
作者: Guo, Tiantian Lim, Eng Gee Lopez-Benitez, Miguel Fei, Ma Limin, Yu Department of Communications and Networking Suzhou China University of Liverpool Department of Electrical Engineering and Electronics Merseyside Liverpool United Kingdom ARIES Research Centre Antonio de Nebrija University Madrid28040 Spain Department Applied Mathematics Suzhou China
Underwater target localization has always been a challenging and important research topic in underwater acoustic sensing, especially when the underwater target is moving. This paper uses three pulse signals for system... 详细信息
来源: 评论
Research on Feature Optimization Scheme Based on data Feature Enhancement  21
Research on Feature Optimization Scheme Based on Data Featur...
收藏 引用
21st IEEE international conference on Software Quality, Reliability and Security (QRS)
作者: Deng, Zhi Shi, Zhao Wang, Zhenxin Liu, Tao Northwestern Polytech Univ Sch Comp Sci Xian Peoples R China Anhui Polytech Univ Coll Comp & Informat Wuhu Peoples R China
Based on the common knowledge in the field of feature engineering that "data and features determine the upper limit of the model, and models and algorithms just approach the upper limit", this article believ... 详细信息
来源: 评论
Versatile feature learning with graph convolutions and graph structures  21
Versatile feature learning with graph convolutions and graph...
收藏 引用
21st IEEE international conference on data Mining (IEEE ICDM)
作者: Cong, Guojing Lim, Seung-Hwan Oakridge Natl Lab Oakridge TN 37830 USA
Graphs represent real world relationships, and graph embedding projects nodes in a graph to a latent space that can help simplify downstream tasks. Recent development of graph convolutions in deep learning significant... 详细信息
来源: 评论
Metagenome2Vec: Building Contextualized Representations for Scalable Metagenome Analysis  21
Metagenome2Vec: Building Contextualized Representations for ...
收藏 引用
21st IEEE international conference on data Mining (IEEE ICDM)
作者: Aakur, Sathyanarayanan N. Indla, Vineela Indla, Vennela Narayanan, Sai Bagavathi, Arunkumar Ramnath, Vishalini Laguduva Ramachandran, Akhilesh Oklahoma State Univ Stillwater OK 74078 USA
Advances in next-generation metagenome sequencing have the potential to revolutionize the point-of-care diagnosis of novel pathogen infections, which could help prevent potential widespread transmission of diseases. G... 详细信息
来源: 评论
Enhancing Clinical Activity Recognition with Bidirectional RNNs and Accelerometer-ECG Fusion
Enhancing Clinical Activity Recognition with Bidirectional R...
收藏 引用
international conference on Electrical engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON
作者: Sakorn Mekruksavanich Ponnipa Jantawong Anuchit Jitpattanakul Department of Computer Engineering School of Information and Communication Technology University of Phayao Phayao Thailand Department of Mathematics Faculty of Applied Science Intelligent and Nonlinear Dynamic Innovations Research Center King Mongkut's University of Technology North Bangkok Bangkok Thailand
The ongoing monitoring of human activities has several applications in digital health. However, precisely identifying activities in medical settings is difficult because of the intricate nature of actions and patient ... 详细信息
来源: 评论
learning Personal Human Biases and Representations for Subjective Tasks in Natural Language Processing  21
Learning Personal Human Biases and Representations for Subje...
收藏 引用
21st IEEE international conference on data Mining (IEEE ICDM)
作者: Kocon, Jan Gruza, Marcin Bielaniewicz, Julita Grimling, Damian Kanclerz, Kamil Milkowski, Piotr Kazienko, Przemyslaw Wroclaw Univ Sci & Technol Dept Artificial Intelligence Wroclaw Poland Sentimenti Sp Zoo Poznan Poland
Many tasks in natural language processing like offensive, toxic, or emotional text classification are subjective by nature. Humans tend to perceive textual content in their own individual way. Existing methods commonl... 详细信息
来源: 评论
Discrete Task-Space Automatic Curriculum learning for Robotic Grasping  21
Discrete Task-Space Automatic Curriculum Learning for Roboti...
收藏 引用
21st international conference on Control, Automation and Systems (ICCAS)
作者: Kurkcu, Anil Acar, Cihan Campolo, Domenico Tee, Keng Peng ASTAR Inst Infocomm Res Singapore Singapore Nanyang Technol Univ Dept Mech & Aerosp Engn Singapore Singapore
Deep reinforcement learning algorithms struggle in the domain of robotics where data collection is time consuming and in some cases safety-constrained. For sample-efficiency, curriculum learning has shown good results... 详细信息
来源: 评论
A statistically-Guided Deep Network Transformation and Moderation Framework for data with Spatial Heterogeneity  21
A Statistically-Guided Deep Network Transformation and Moder...
收藏 引用
21st IEEE international conference on data Mining (IEEE ICDM)
作者: Xie, Yiqun He, Erhu Jia, Xiaowei Bao, Han Zhou, Xun Ghosh, Rahul Ravirathinam, Praveen Univ Maryland College Pk MD 20742 USA Univ Pittsburgh Pittsburgh PA 15260 USA Univ Iowa Iowa City IA 52242 USA Univ Minnesota Minneapolis MN 55455 USA
Spatial data are ubiquitous, massively collected, and widely used to support critical decision-making in many societal domains, including public health (e.g., COVID-19 pandemic control), agricultural crop monitoring, ... 详细信息
来源: 评论
AD-CGAN: Contrastive Generative Adversarial Network for Anomaly Detection  21st
AD-CGAN: Contrastive Generative Adversarial Network for Anom...
收藏 引用
21st international conference on Image Analysis and Processing (ICIAP)
作者: Sevyeri, Laya Rafiee Fevens, Thomas Concordia Univ Gina Cody Sch Engn & Comp Sci Montreal PQ Canada
Anomaly detection (AD), a fundamental challenge in machine learning, aims to find samples that do not belong to the distribution of the training data. Among unsupervised anomaly detection models, models based on gener... 详细信息
来源: 评论
Domain-Robust Pre-Training Method for the Sensor-Based Human Activity Recognition  21
Domain-Robust Pre-Training Method for the Sensor-Based Human...
收藏 引用
21st international conference on Machine learning and Cybernetics, ICMLC 2022
作者: Zhao, Zhong-Kai Hasegawa, Tatsuhito University of Fukui Graduate School of Engineering Fukui071002 Japan
Transfer learning improves problem-solving efficiency by transferring the learned knowledge from the source domain to the target domain. In transfer learning, using a large amount of data for pre-training is beneficia... 详细信息
来源: 评论