咨询与建议

限定检索结果

文献类型

  • 109 篇 会议
  • 2 册 图书

馆藏范围

  • 111 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 104 篇 工学
    • 102 篇 计算机科学与技术...
    • 11 篇 软件工程
    • 3 篇 控制科学与工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 化学工程与技术
    • 2 篇 生物工程
    • 2 篇 安全科学与工程
    • 1 篇 机械工程
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 建筑学
    • 1 篇 水利工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 农业工程
  • 9 篇 理学
    • 6 篇 数学
    • 3 篇 生物学
    • 2 篇 统计学(可授理学、...
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 大气科学
    • 1 篇 海洋科学
  • 6 篇 管理学
    • 4 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 2 篇 教育学
    • 2 篇 教育学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学

主题

  • 19 篇 deep learning
  • 19 篇 machine learning
  • 5 篇 data mining
  • 4 篇 classification
  • 4 篇 data augmentatio...
  • 3 篇 ensemble learnin...
  • 3 篇 industry 4.0
  • 3 篇 telecommunicatio...
  • 3 篇 generative adver...
  • 3 篇 big data
  • 3 篇 optimization
  • 3 篇 imbalanced data
  • 3 篇 artificial intel...
  • 3 篇 computer vision
  • 3 篇 convolutional ne...
  • 3 篇 convolutional ne...
  • 2 篇 data generation
  • 2 篇 pitch angle
  • 2 篇 reinforcement le...
  • 2 篇 clustering

机构

  • 6 篇 univ porto fac e...
  • 4 篇 univ minho algor...
  • 4 篇 univ minho campu...
  • 3 篇 univ minho ctr a...
  • 3 篇 liaad inesc tec ...
  • 3 篇 yonsei univ dept...
  • 3 篇 artificial intel...
  • 2 篇 univ essex sch c...
  • 2 篇 univ politecn ma...
  • 2 篇 univ sao paulo i...
  • 2 篇 nos comunicacoes...
  • 2 篇 university of mi...
  • 2 篇 univ complutense...
  • 2 篇 university of ma...
  • 2 篇 univ twente ensc...
  • 2 篇 bosch car multim...
  • 2 篇 faculty of scien...
  • 2 篇 univ complutense...
  • 2 篇 univ fed pernamb...
  • 2 篇 rey juan carlos ...

作者

  • 6 篇 santos matilde
  • 5 篇 machado jose
  • 4 篇 novais paulo
  • 4 篇 naranjo valery
  • 4 篇 cho sung-bae
  • 3 篇 ferreira diana
  • 3 篇 horvath tomas
  • 3 篇 mendes-moreira j...
  • 3 篇 lori nicolas
  • 3 篇 bu seok-jun
  • 3 篇 colomer adrian
  • 3 篇 lancho carmen
  • 3 篇 cardoso henrique...
  • 3 篇 de carvalho andr...
  • 3 篇 camacho david
  • 3 篇 pereira carlos
  • 2 篇 garcia kemilly d...
  • 2 篇 rubio thiago r. ...
  • 2 篇 fonseca joaquim
  • 2 篇 cruz jose aleixo

语言

  • 111 篇 英文
检索条件"任意字段=21th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2020"
111 条 记 录,以下是21-30 订阅
排序:
Workshop on Machine learning in Smart Mobility  21st
Workshop on Machine Learning in Smart Mobility
收藏 引用
21st international conference on intelligent data engineering and automated learning
作者: Ferreira, Sara Cardoso, Henrique Lopes Rossetti, Rosaldo J. F. Artificial Intelligence & Comp Sci Lab LIACC Porto Portugal Res Ctr Terr Transports & Environm CITTA Porto Portugal Univ Porto Fac Engn Porto Portugal
the workshop on Machine learning in Smart Mobility (MLSM) was co-located with the 21st international conference on intelligent data engineering and automated learningideal 2020, held online on November 4–6. © ... 详细信息
来源: 评论
On Random-Forest-Based Prediction Intervals  1
收藏 引用
21st international conference on intelligent data engineering and automated learning
作者: Calvino, Aida Univ Complutense Madrid Dept Stat & Data Sci Madrid Spain
In the context of predicting continuous variables, many proposals in the literature exist dealing with point predictions. However, these predictions have inherent errors which should be quantified. Prediction interval... 详细信息
来源: 评论
Generalized Derivative Based Kernelized learning Vector Quantization
Generalized Derivative Based Kernelized Learning Vector Quan...
收藏 引用
11th international conference on intelligent data engineering and automated learning
作者: Schleif, Frank-Michael Villmann, thomas Hammer, Barbara Schneider, Petra Biehl, Michael Univ Bielefeld Dept Techn Univ Str 21-23 D-33615 Bielefeld Germany Univ Appl Faculty Math Natural & CS D-09648 Mittweida Germany Univ Groningen Johann Bernoulli Inst Math & CS NL-9700 Groningen Netherlands
We derive a novel derivative based version of kernelized Generalized learning Vector Quantization (KGLVQ) as an effective, easy to interpret, prototype based and kernelized classifier. It is called D-KGLVQ and we prov... 详细信息
来源: 评论
learning User Comfort and Well-Being through Smart Devices  21st
Learning User Comfort and Well-Being Through Smart Devices
收藏 引用
21st international conference on intelligent data engineering and automated learning
作者: Sousa, David Silva, Fabio Analide, Cesar Univ Minho ALGORITMI Ctr Dept Informat Braga Portugal Politecn Porto ESTG CIICESI Felgueiras Portugal
this article aims to provide a large-scale study, without geographical restrictions, on how people's habits can influence their comfort and well-being. In this sense, sensing techniques are used, through smart dev... 详细信息
来源: 评论
intelligent Call Routing for Telecommunications Call-Centers  21st
Intelligent Call Routing for Telecommunications Call-Centers
收藏 引用
21st international conference on intelligent data engineering and automated learning
作者: Jorge, Sergio Pereira, Carlos Novais, Paulo Univ Minho Campus Gualtar P-4710 Braga Portugal NOS Comunicacoes Senhora Da Hora Portugal Univ Minho Algoritmi Ctr Campus Gualtar P-4710 Braga Portugal
At telecommunications companies, call-centers have the highest interaction with customers, and the operators' performance is vital because an excellent service satisfies the customer and helps a better operation. ... 详细信息
来源: 评论
Instance-Based Stacked Generalization for Transfer learning  19th
Instance-Based Stacked Generalization for Transfer Learning
收藏 引用
19th international conference on intelligent data engineering and automated learning (ideal)
作者: Baghoussi, Yassine Mendes-Moreira, Joao LIAAD INESC TEC Porto Portugal Univ Porto Fac Sci Porto Portugal Univ Porto Fac Engn Porto Portugal
We present a method for improving the prediction accuracy using multiple predictive algorithms. Several techniques have been developed to tackle this issue such as bagging, boosting and stacking. In contrary to the fi... 详细信息
来源: 评论
Improving Adversarial learning with Image Quality Measures for Image Deblurring  1
收藏 引用
21st international conference on intelligent data engineering and automated learning
作者: Su, Jingwen Yin, Hujun Univ Manchester Dept Elect & Elect Engn Manchester M13 9PL Lancs England
Generative adversarial networks (GANs) have become popular and powerful models for solving a wide range of image processing problems. We introduce a novel component based on image quality measures in the objective fun... 详细信息
来源: 评论
Using Deep learning for Ordinal Classification of Mobile Marketing User Conversion  1
收藏 引用
20th international conference on intelligent data engineering and automated learning (ideal)
作者: Miguel Matos, Luis Cortez, Paulo Castro Mendes, Rui Moreau, Antoine Univ Minho ALGORITMI Ctr P-4804533 Guimaraes Portugal OLAmobile Spinpk P-4805017 Guimaraes Portugal
In this paper, we explore Deep Multilayer Perceptrons (MLP) to perform an ordinal classification of mobile marketing conversion rate (CVR), allowing to measure the value of product sales when an user clicks an ad. As ... 详细信息
来源: 评论
Using Kullback-Leibler Divergence to Identify Prominent Sensor data for Fault Diagnosis  1
收藏 引用
21st international conference on intelligent data engineering and automated learning
作者: Monteiro, Rodrigo P. Bastos-Filho, Carmelo J. A. Univ Fed Pernambuco Recife PE Brazil Univ Pernambuco Recife PE Brazil
the combination of machine learning techniques and signal analysis is a well-known solution for the fault diagnosis of industrial equipment. Efficient maintenance management, safer operation, and economic gains are th... 详细信息
来源: 评论
A Novel Ensemble Approach for Improving Generalization Ability of Neural Networks
A Novel Ensemble Approach for Improving Generalization Abili...
收藏 引用
9th international conference on intelligent data engineering and automated Learn
作者: Lu, Lei Zeng, Xiaoqin Wu, Shengli Zhong, Shuiming Hohai Univ Dept Comp Sci & Engn Nanjing Peoples R China Univ Ulster Sch Comp & Math Coleraine BT52 1SA Londonderry North Ireland
Ensemble learning is one of the main directions in machine learning and data mining, which allows learners to achieve higher training accuracy and better generalization ability. In this paper, with an aim at improving... 详细信息
来源: 评论