咨询与建议

限定检索结果

文献类型

  • 78 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 79 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 34 篇 工学
    • 31 篇 电气工程
    • 16 篇 计算机科学与技术...
    • 10 篇 信息与通信工程
    • 8 篇 软件工程
    • 1 篇 光学工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 测绘科学与技术
    • 1 篇 化学工程与技术
  • 7 篇 医学
    • 7 篇 临床医学
  • 5 篇 理学
    • 3 篇 物理学
    • 1 篇 数学
    • 1 篇 地理学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 1 篇 管理学
    • 1 篇 图书情报与档案管...

主题

  • 16 篇 machine learning
  • 11 篇 wireless communi...
  • 11 篇 training
  • 10 篇 signal processin...
  • 7 篇 signal processin...
  • 7 篇 accuracy
  • 6 篇 signal to noise ...
  • 5 篇 convergence
  • 5 篇 optimization
  • 5 篇 servers
  • 5 篇 computational mo...
  • 5 篇 time series anal...
  • 5 篇 data models
  • 4 篇 deep learning
  • 4 篇 feature extracti...
  • 4 篇 kernel
  • 4 篇 estimation
  • 4 篇 federated learni...
  • 4 篇 yttrium
  • 3 篇 noise measuremen...

机构

  • 3 篇 ece department n...
  • 2 篇 thales airborne ...
  • 2 篇 univ padua dept ...
  • 2 篇 department of el...
  • 2 篇 institut univers...
  • 2 篇 graduate program...
  • 2 篇 avea labs istanb...
  • 2 篇 eurecom sophia a...
  • 1 篇 university of pi...
  • 1 篇 institute for th...
  • 1 篇 ucl gatsby compu...
  • 1 篇 univ new south w...
  • 1 篇 univ lancaster c...
  • 1 篇 laboratory of ps...
  • 1 篇 univ texas austi...
  • 1 篇 signal processin...
  • 1 篇 peking univ natl...
  • 1 篇 univ carlos iii ...
  • 1 篇 department of el...
  • 1 篇 univ carlos iii ...

作者

  • 3 篇 suleyman s. koza...
  • 3 篇 ibrahim delibalt...
  • 2 篇 deniz erdogmus
  • 2 篇 sergey plis
  • 2 篇 n. denizcan vanl...
  • 2 篇 vince calhoun
  • 2 篇 muhammed o. sayi...
  • 1 篇 li xinyue
  • 1 篇 negliat giovanni
  • 1 篇 prato m.
  • 1 篇 sylvain bouix
  • 1 篇 ravishankar saip...
  • 1 篇 kristoffer h. ma...
  • 1 篇 joonyoung cho
  • 1 篇 dimitrios katsel...
  • 1 篇 robert jenssen
  • 1 篇 d. erdogmus
  • 1 篇 huseyin ozkan
  • 1 篇 ruslan v. kutluy...
  • 1 篇 schenato luca

语言

  • 79 篇 英文
检索条件"任意字段=25th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2015"
79 条 记 录,以下是1-10 订阅
排序:
ieee international workshop on machine learning for signal processing, mlsp
IEEE International Workshop on Machine Learning for Signal P...
收藏 引用
25th ieee international workshop on machine learning for signal processing, mlsp 2015
the proceedings contain 73 papers. the topics discussed include: discriminating bipolar disorder from major depression using whole-brain functional connectivity: a feature selection analysis with SVM-FOBA algorithm;ch...
来源: 评论
learning of scanning strategies for electronic support using predictive state representations  25
Learning of scanning strategies for electronic support using...
收藏 引用
25th ieee international workshop on machine learning for signal processing, mlsp 2015
作者: Claude, Hadrien Enderli, Cyrille Grandin, Jean-Francois Pietquin, Olivier Thales Airborne Systems Elancourt France Univ. Lille CRIStAL SequeL Team Villeneuve d'Ascq France Institut Universitaire de France France
In Electronic Support, a receiver must monitor a wide frequency spectrum in which threatening emitters operate. A common approach is to use sensors with high sensitivity but a narrow bandwidth. To maintain surveillanc... 详细信息
来源: 评论
GENERIC BOUNDS ON thE MAXIMUM DEVIATIONS IN SEQUENTIAL PREDICTION: AN INFORMATION-thEORETIC ANALYSIS  29
GENERIC BOUNDS ON THE MAXIMUM DEVIATIONS IN SEQUENTIAL PREDI...
收藏 引用
ieee 29th international workshop on machine learning for signal processing (mlsp)
作者: Fang, Song Zhu, Quanyan NYU Dept Elect & Comp Engn New York NY 10003 USA
In this paper, we derive generic bounds on the maximum deviations in prediction errors for sequential prediction via an information-theoretic approach. the fundamental bounds are shown to depend only on the conditiona... 详细信息
来源: 评论
INTRA-CLUSTER TRAINING STRATEGY FOR DEEP learning WIth APPLICATIONS TO LANGUAGE IDENTIFICATION  26
INTRA-CLUSTER TRAINING STRATEGY FOR DEEP LEARNING WITH APPLI...
收藏 引用
26th ieee international workshop on machine learning for signal processing (mlsp)
作者: Bekker, Alan Joseph Opher, Irit Lapidot, Itsik Goldberger, Jacob Bar Ilan Univ Fac Engn Ramat Gan Israel Afeka Acad Coll Engn ACLP Tel Aviv Israel
In this study we address the problem of training a neural network for language identification using speech samples in the form of i-vectors. Our approach involves training a classifier and analyzing the obtained confu... 详细信息
来源: 评论
SCALABLE TRANSFORMED ADDITIVE signal DECOMPOSITION BY NON-CONJUGATE GAUSSIAN PROCESS INFERENCE  26
SCALABLE TRANSFORMED ADDITIVE SIGNAL DECOMPOSITION BY NON-CO...
收藏 引用
26th ieee international workshop on machine learning for signal processing (mlsp)
作者: Adam, Vincent Hensman, James Sahani, Maneesh UCL Gatsby Computat Neurosci Unit 25 Howland St London W1T 4JG England Univ Lancaster CHICAS Fac Hlth & Med Lancaster LA1 4YB England
Many functions and signals of interest are formed by the addition of multiple underlying components, often nonlinearly transformed and modified by noise. Examples may be found in the literature on Generalized Additive... 详细信息
来源: 评论
GLOBALLY OPTIMAL ROBUST MATRIX COMPLETION BASED ON M-ESTIMATION  30
GLOBALLY OPTIMAL ROBUST MATRIX COMPLETION BASED ON M-ESTIMAT...
收藏 引用
30th ieee international workshop on machine learning for signal processing (mlsp)
作者: Ruppel, Felicia Muma, Michael Zoubir, Abdelhak M. Tech Univ Darmstadt Signal Proc Grp Merckstr 25 D-64283 Darmstadt Germany
Robust matrix completion allows for estimating a low-rank matrix based on a subset of its entries, even in presence of impulsive noise and outliers. We explore recent progress in the theoretical analysis of non-convex... 详细信息
来源: 评论
COLLISION-FREE UAV NAVIGATION WIth A MONOCULAR CAMERA USING DEEP REINFORCEMENT learning  30
COLLISION-FREE UAV NAVIGATION WITH A MONOCULAR CAMERA USING ...
收藏 引用
30th ieee international workshop on machine learning for signal processing (mlsp)
作者: Chen, Yun Gonzalez-Prelcic, Nuria Heath, Robert W., Jr. Univ Texas Austin Dept Elect & Comp Engn Austin TX 78712 USA
Small unmanned aerial vehicles (UAV) with reduced sensing and communication capabilities can support potential use cases in different indoor environments such as automated factories or commercial buildings. In this co... 详细信息
来源: 评论
DEEP REINFORCEMENT learning BASED ENERGY BEAMFORMING FOR POWERING SENSOR NETWORKS  29
DEEP REINFORCEMENT LEARNING BASED ENERGY BEAMFORMING FOR POW...
收藏 引用
ieee 29th international workshop on machine learning for signal processing (mlsp)
作者: Ozcelikkale, Ayca Koseoglu, Mehmet Srivastava, Mani Ahlen, Anders Uppsala Univ Signals & Syst Uppsala Sweden Hacettepe Univ Dept Comp Sci Ankara Turkey Univ Calif Dept Elect & Comp Engn Davis CA USA
We focus on a wireless sensor network powered with an energy beacon, where sensors send their measurements to the sink using the harvested energy. the aim of the system is to estimate an unknown signal over the area o... 详细信息
来源: 评论
LATENT FORCE MODELS FOR EARth OBSERVATION TIME SERIES PREDICTION  26
LATENT FORCE MODELS FOR EARTH OBSERVATION TIME SERIES PREDIC...
收藏 引用
26th ieee international workshop on machine learning for signal processing (mlsp)
作者: Luengo, David Campos-Taberner, Manuel Camps-Valls, Gustau Univ Politecn Madrid Dept Signal Theory & Commun Madrid Spain Univ Valencia Dept Earth Phys & Thermodynam E-46003 Valencia Spain Univ Valencia IPL E-46003 Valencia Spain
We introduce latent force models for Earth observation time series analysis. the model uses Gaussian processes and differential equations to combine data driven modelling with a physical model of the system. the LFM p... 详细信息
来源: 评论
CORRENTROPY INDUCED METRIC BASED COMMON SPATIAL PATTERNS
CORRENTROPY INDUCED METRIC BASED COMMON SPATIAL PATTERNS
收藏 引用
27th ieee international workshop on machine learning for signal processing (mlsp)
作者: Dong, Jiyao Chen, Badong Lu, Na Wang, Haixian Zheng, Nanning Xi An Jiao Tong Univ Sch Elect & Informat Engn Xian 710049 Shaanxi Peoples R China Southeast Univ Res Ctr Learning Sci Inst Child Dev & Educ Nanjing 210096 Jiangsu Peoples R China
Common spatial patterns ( CSP) is a widely used method in the field of electroencephalogram (EEG) signal processing. the goal of CSP is to find spatial filters that maximize the ratio between the variances of two clas... 详细信息
来源: 评论