咨询与建议

限定检索结果

文献类型

  • 1,535 篇 会议
  • 21 册 图书
  • 13 篇 期刊文献

馆藏范围

  • 1,569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,449 篇 工学
    • 1,046 篇 计算机科学与技术...
    • 655 篇 机械工程
    • 358 篇 电气工程
    • 111 篇 软件工程
    • 55 篇 控制科学与工程
    • 49 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 仪器科学与技术
    • 17 篇 网络空间安全
    • 15 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 电子科学与技术(可...
    • 8 篇 安全科学与工程
    • 7 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 建筑学
  • 112 篇 医学
    • 108 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 87 篇 理学
    • 38 篇 物理学
    • 34 篇 数学
    • 24 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 5 篇 化学
  • 42 篇 管理学
    • 32 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
  • 24 篇 艺术学
    • 24 篇 设计学(可授艺术学...
  • 19 篇 法学
    • 19 篇 社会学
  • 15 篇 文学
    • 15 篇 新闻传播学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 528 篇 computer vision
  • 139 篇 face recognition
  • 135 篇 pattern recognit...
  • 135 篇 feature extracti...
  • 130 篇 cameras
  • 129 篇 image segmentati...
  • 128 篇 object recogniti...
  • 115 篇 object detection
  • 103 篇 training
  • 98 篇 robustness
  • 94 篇 images
  • 92 篇 image recognitio...
  • 90 篇 shape
  • 90 篇 layout
  • 84 篇 visualization
  • 77 篇 image reconstruc...
  • 76 篇 humans
  • 70 篇 computer science
  • 66 篇 computational mo...
  • 66 篇 image classifica...

机构

  • 23 篇 rhein westfal th...
  • 18 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 15 篇 stanford univ st...
  • 14 篇 univ chinese aca...
  • 11 篇 australian natl ...
  • 11 篇 univ calif berke...
  • 10 篇 univ sci & techn...
  • 10 篇 mit cambridge ma...
  • 10 篇 univ maryland co...
  • 9 篇 microsoft res as...
  • 9 篇 univ washington ...
  • 8 篇 microsoft resear...
  • 8 篇 microsoft res re...
  • 8 篇 natl univ singap...
  • 7 篇 chinese univ hon...
  • 7 篇 tech univ munich...
  • 6 篇 mpi intelligent ...
  • 6 篇 kaust thuwal
  • 6 篇 imperial coll lo...

作者

  • 20 篇 leibe bastian
  • 12 篇 ji qiang
  • 10 篇 li stan z.
  • 9 篇 pal umapada
  • 8 篇 zhang lei
  • 8 篇 chellappa rama
  • 8 篇 lei zhen
  • 8 篇 zafeiriou stefan...
  • 8 篇 hu weiming
  • 8 篇 hua gang
  • 7 篇 ramanan deva
  • 7 篇 wang xiaogang
  • 7 篇 yan shuicheng
  • 7 篇 mubarak shah
  • 6 篇 van gool luc
  • 6 篇 darrell trevor
  • 6 篇 luiten jonathon
  • 6 篇 pollefeys marc
  • 6 篇 bischof horst
  • 6 篇 ghanem bernard

语言

  • 1,554 篇 英文
  • 9 篇 土耳其文
  • 2 篇 日文
  • 2 篇 其他
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"任意字段=26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR"
1569 条 记 录,以下是111-120 订阅
排序:
MKPLS: Manifold Kernel Partial Least Squares for Lipreading and Speaker Identification
MKPLS: Manifold Kernel Partial Least Squares for Lipreading ...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Bakry, Amr Elgammal, Ahmed Rutgers State Univ Dept Comp Sci Piscataway NJ 08854 USA
Visual speech recognition is a challenging problem, due to confusion between visual speech features. the speaker identification problem is usually coupled with speech recognition. Moreover, speaker identification is i... 详细信息
来源: 评论
Augmenting Bag-of-Words: Data-Driven Discovery of Temporal and Structural Information for Activity recognition
Augmenting Bag-of-Words: Data-Driven Discovery of Temporal a...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Bettadapura, Vinay Schindler, Grant Ploetz, thomas Essa, Irfan Georgia Inst Technol Atlanta GA 30332 USA Newcastle Univ Newcastle Upon Tyne Tyne & Wear England
We present data-driven techniques to augment Bag of Words (BoW) models, which allow for more robust modeling and recognition of complex long-term activities, especially when the structure and topology of the activitie... 详细信息
来源: 评论
HON4D: Histogram of Oriented 4D Normals for Activity recognition from Depth Sequences
HON4D: Histogram of Oriented 4D Normals for Activity Recogni...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Oreifej, Omar Liu, Zicheng Univ Cent Florida Orlando FL 32816 USA Microsoft Res Redmond WA USA
We present a new descriptor for activity recognition from videos acquired by a depth sensor Previous descriptors mostly compute shape and motion features independently;thus, they often fail to capture the complex join... 详细信息
来源: 评论
Image Understanding from Experts' Eyes by Modeling Perceptual Skill of Diagnostic Reasoning Processes
Image Understanding from Experts' Eyes by Modeling Perceptua...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Li, Rui Shi, Pengcheng Haake, Anne R. Rochester Inst Technol Rochester NY 14623 USA
Eliciting and representing experts' remarkable perceptual capability of locating, identifying and categorizing objects in images specific to their domains of expertise will benefit image understanding in terms of ... 详细信息
来源: 评论
What's in a Name? First Names as Facial Attributes
What's in a Name? First Names as Facial Attributes
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Chen, Huizhong Gallagher, Andrew C. Girod, Bernd Stanford Univ Stanford CA 94305 USA Cornell Univ Ithaca NY 14853 USA
this paper introduces a new idea in describing people using their first names, i.e., the name assigned at birth. We show that describing people in terms of similarity to a vector of possible first names is a powerful ... 详细信息
来源: 评论
Unsupervised Joint Object Discovery and Segmentation in Internet Images
Unsupervised Joint Object Discovery and Segmentation in Inte...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Rubinstein, Michael Joulin, Armand Kopf, Johannes Liu, Ce MIT CSAIL Cambridge MA 02139 USA INRIA Paris France Microsoft Res Beijing Peoples R China
We present a new unsupervised algorithm to discover and segment out common objects from large and diverse image collections. In contrast to previous co-segmentation methods, our algorithm performs well even in the pre... 详细信息
来源: 评论
Fast Trust Region for Segmentation
Fast Trust Region for Segmentation
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Gorelick, Lena Schmidt, Frank R. Boykov, Yuri Univ Western Ontario Comp Vis Grp London ON N6A 3K7 Canada Univ Freiburg BIOSS Ctr Biol Signalling Studies Freiburg Germany
Trust region is a well-known general iterative approach to optimization which offers many advantages over standard gradient descent techniques. In particular, it allows more accurate nonlinear approximation models. In... 详细信息
来源: 评论
Multi-Attribute Queries: To Merge or Not to Merge?
Multi-Attribute Queries: To Merge or Not to Merge?
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Rastegari, Mohammad Diba, Ali Parikh, Devi Farhadi, Ali Univ Maryland College Pk MD 20742 USA Sharif Univ Technol Tehran Iran Virginia Tech Blacksburg VA USA Univ Washington Seattle WA 98195 USA
Users often have very specific visual content in mind that they are searching for. the most natural way to communicate this content to an image search engine is to use keywords that specify various properties or attri... 详细信息
来源: 评论
Symmetry Detection from Real World Images Competition 2013: Summary and Results
Symmetry Detection from Real World Images Competition 2013: ...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Liu, Jingchen Slota, George Zheng, Gang Wu, Zhaohui Park, Minwoo Lee, Seungkyu Rauschert, Ingmar Liu, Yanxi Penn State Univ University Pk PA 16802 USA Object Video San Antonio TX USA Samsung Res Seoul South Korea
Symmetry is a pervasive phenomenon presenting itself in all forms and scales in natural and manmade environments. Its detection plays an essential role at all levels of human as well as machine perception. the recent ... 详细信息
来源: 评论
Semi-supervised Node Splitting for Random Forest Construction
Semi-supervised Node Splitting for Random Forest Constructio...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Liu, Xiao Song, Mingli Tao, Dacheng Liu, Zicheng Zhang, Luming Chen, Chun Bu, Jiajun Zhejiang Univ Coll Comp Sci Hangzhou Zhejiang Peoples R China Univ Technol Sydney Ctr Quantum Computat & Intelligent Syst Sydney NSW 2007 Australia Microsoft Res Redmond WA USA
Node splitting is an important issue in Random Forest but robust splitting requires a large number of training samples. Existing solutions fail to properly partition the feature space if there are insufficient trainin... 详细信息
来源: 评论