咨询与建议

限定检索结果

文献类型

  • 1,535 篇 会议
  • 21 册 图书
  • 13 篇 期刊文献

馆藏范围

  • 1,569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,449 篇 工学
    • 1,046 篇 计算机科学与技术...
    • 655 篇 机械工程
    • 358 篇 电气工程
    • 111 篇 软件工程
    • 55 篇 控制科学与工程
    • 49 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 仪器科学与技术
    • 17 篇 网络空间安全
    • 15 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 电子科学与技术(可...
    • 8 篇 安全科学与工程
    • 7 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 建筑学
  • 112 篇 医学
    • 108 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 87 篇 理学
    • 38 篇 物理学
    • 34 篇 数学
    • 24 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 5 篇 化学
  • 42 篇 管理学
    • 32 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
  • 24 篇 艺术学
    • 24 篇 设计学(可授艺术学...
  • 19 篇 法学
    • 19 篇 社会学
  • 15 篇 文学
    • 15 篇 新闻传播学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 528 篇 computer vision
  • 139 篇 face recognition
  • 135 篇 pattern recognit...
  • 135 篇 feature extracti...
  • 130 篇 cameras
  • 129 篇 image segmentati...
  • 128 篇 object recogniti...
  • 115 篇 object detection
  • 103 篇 training
  • 98 篇 robustness
  • 94 篇 images
  • 92 篇 image recognitio...
  • 90 篇 shape
  • 90 篇 layout
  • 84 篇 visualization
  • 77 篇 image reconstruc...
  • 76 篇 humans
  • 70 篇 computer science
  • 66 篇 computational mo...
  • 66 篇 image classifica...

机构

  • 23 篇 rhein westfal th...
  • 18 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 15 篇 stanford univ st...
  • 14 篇 univ chinese aca...
  • 11 篇 australian natl ...
  • 11 篇 univ calif berke...
  • 10 篇 univ sci & techn...
  • 10 篇 mit cambridge ma...
  • 10 篇 univ maryland co...
  • 9 篇 microsoft res as...
  • 9 篇 univ washington ...
  • 8 篇 microsoft resear...
  • 8 篇 microsoft res re...
  • 8 篇 natl univ singap...
  • 7 篇 chinese univ hon...
  • 7 篇 tech univ munich...
  • 6 篇 mpi intelligent ...
  • 6 篇 kaust thuwal
  • 6 篇 imperial coll lo...

作者

  • 20 篇 leibe bastian
  • 12 篇 ji qiang
  • 10 篇 li stan z.
  • 9 篇 pal umapada
  • 8 篇 zhang lei
  • 8 篇 chellappa rama
  • 8 篇 lei zhen
  • 8 篇 zafeiriou stefan...
  • 8 篇 hu weiming
  • 8 篇 hua gang
  • 7 篇 ramanan deva
  • 7 篇 wang xiaogang
  • 7 篇 yan shuicheng
  • 7 篇 mubarak shah
  • 6 篇 van gool luc
  • 6 篇 darrell trevor
  • 6 篇 luiten jonathon
  • 6 篇 pollefeys marc
  • 6 篇 bischof horst
  • 6 篇 ghanem bernard

语言

  • 1,554 篇 英文
  • 9 篇 土耳其文
  • 2 篇 日文
  • 2 篇 其他
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"任意字段=26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR"
1569 条 记 录,以下是1211-1220 订阅
排序:
Latent Topic Random Fields: Learning using a taxonomy of labels
Latent Topic Random Fields: Learning using a taxonomy of lab...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.1
作者: Xuming He Richard S. Zemel University of Toronto Canada
An important problem in image labeling concerns learning with images labeled at varying levels of specificity. We propose an approach that can incorporate images with labels drawn from a semantic hierarchy, and can al... 详细信息
来源: 评论
From Skeletons to Bone Graphs: Medial Abstraction for Object recognition
From Skeletons to Bone Graphs: Medial Abstraction for Object...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.11
作者: Diego Macrini Kaleem Siddiqi Sven Dickinson University of Toronto Canada McGill University Canada
Medial descriptions, such as shock graphs, have gained significant momentum in the shape-based object recognition community due to their invariance to translation, rotation, scale and articulation and their ability to... 详细信息
来源: 评论
Semi-Supervised Boosting using Visual Similarity Learning
Semi-Supervised Boosting using Visual Similarity Learning
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.7
作者: Christian Leistner Helmut Grabner Horst Bischof Institute for Computer Graphics and Vision Graz University of Technology Austria
the required amount of labeled training data for object detection and classification is a major drawback of current methods. Combining labeled and unlabeled data via semi-supervised learning holds the promise to ease ... 详细信息
来源: 评论
Closing the Loop in Scene Interpretation
Closing the Loop in Scene Interpretation
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.6
作者: Derek Hoiem Alexei A. Efros Martial Hebert Beckman Institute University of Illinois USA Robotics Institute Carnegie Mellon University USA
Image understanding involves analyzing many different aspects of the scene. In this paper, we are concerned with how these tasks can be combined in a way that improves the performance of each of them. Inspired by Barr... 详细信息
来源: 评论
Granularity and Elasticity Adaptation in Visual Tracking
Granularity and Elasticity Adaptation in Visual Tracking
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.5
作者: Ming Yang Ying Wu Department of EECS Northwestern University Evanston IL USA
the observation models in tracking algorithms are critical to both tracking performance and applicable scenarios but are often simplified to focus on fixed level of certain target properties such as appearances and st... 详细信息
来源: 评论
A Statistical Deformation Prior for Non-Rigid Image and Shape Registration
A Statistical Deformation Prior for Non-Rigid Image and Shap...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.2
作者: thomas Albrecht Marcel Luthi thomas Vetter Computer Science Department University of Basel Basel Switzerland
Non-rigid registration is central to many problems in computer vision and medical image analysis. We propose a registration algorithm which is regularized by prior knowledge in the form of a statistical deformation mo... 详细信息
来源: 评论
Efficient Object Shape Recovery via Slicing Planes
Efficient Object Shape Recovery via Slicing Planes
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.11
作者: Po-Lun Lai Alper Yilmaz Photogrammetric Computer Vision Laboratory Ohio State Uinversity Columbus OH USA
Recovering the three-dimensional (3D) object shape remains an unresolved area of research on the cross-section of computer vision, photogrammetry and bioinformatics. Although various techniques have been developed, th... 详细信息
来源: 评论
Object Categorization using Co-Occurrence, Location and Appearance
Object Categorization using Co-Occurrence, Location and Appe...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.11
作者: Carolina Galleguillos Andrew Rabinovich Serge Belongie Department of Computer Science and Engineering University of California San Diego USA
In this work we introduce a novel approach to object categorization that incorporates two types of context - co-occurrence and relative location - with local appearance-based features. Our approach, named CoLA (for Co... 详细信息
来源: 评论
Facial Expression recognition Using Encoded Dynamic Features
Facial Expression Recognition Using Encoded Dynamic Features
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.9
作者: Peng Yang Qingshan Liu Xinyi Cui Dimitris N. Metaxas Computer Science Department Rutgers University Piscataway NJ USA National Laboratory of Pattern Recognition Chinese Academy and Sciences Beijing China
In this paper, we propose a novel framework for video-based facial expression recognition, which can handle the data with various time resolution including a single frame. We first use the haar-like features to repres... 详细信息
来源: 评论
Action Snippets: How many frames does human action recognition require?
Action Snippets: How many frames does human action recogniti...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.10
作者: Konrad Schindler Luc van Gool BIWI ETH Zurich Switzerland ESAT-K.U. Leuven Leuven Belgium
Visual recognition of human actions in video clips has been an active field of research in recent years. However, most published methods either analyse an entire video and assign it a single action label, or use relat... 详细信息
来源: 评论